A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Radix Rehmanniae Praeparata promoted zebrafish fin regeneration through aryl hydrocarbon receptor-dependent autophagy. | LitMetric

Radix Rehmanniae Praeparata promoted zebrafish fin regeneration through aryl hydrocarbon receptor-dependent autophagy.

J Ethnopharmacol

Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; College of Life Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China. Electronic address:

Published: September 2024

Headings Ethnopharmacological Relevance: Rehmanniae Radix Praeparata (RRP), a staple in traditional Chinese medicine, is derived from Rehmannia glutinosa Libosch and is renowned for its wound-healing properties. Despite its clinical prevalence, the molecular mechanisms underlying RRP's wound-healing effects have not been fully elucidated.

Aim Of The Study: This research endeavored to delineate the molecular and cellular mechanisms underlying the beneficial effects of RRP on wound healing, utilizing a zebrafish model.

Materials And Methods: Zebrafish larvae at 3 days post-fertilization were amputated at the fin and subsequently treated with RRP. The pro-wound healing and regenerative effects of RRP were evaluated through morphological analysis, assessment of cell proliferation and apoptosis, Additionally, mechanistic insights were gained through a comprehensive approach encompassing network pharmacology analysis, cell tracing, RNA-sequencing, CRISPR/Cas9 gene editing, and pharmacological inhibition.

Results: Our findings demonstrate that RRP significantly accelerates caudal fin regeneration in zebrafish following injury by suppressing cell apoptosis, promoting cell proliferation, and upregulating the expression of regenerative-related genes. Furthermore, RRP triggers autophagy signals during the regenerative process, which is attenuated by the autophagy inhibitor chloroquine (CQ). Notably, the administration of RRP enhances the expression of ahr1 and ahr2 in the regenerating fin. Genetic knockout of ahr1a, ahr1b, or ahr2 using CRISPR/Cas9, or pharmacological blockade of AHR signals with the antagonist CH-223191, diminishes the regenerative potential of RRP. Remarkably, zebrafish lacking ahr2 completely lose their fin regeneration ability. Additionally, inhibition of AHR signaling suppresses autophagy signaling during fin regeneration.

Conclusions: This study uncovers that RRP stimulates fin regeneration in zebrafish by inducing AHR signals and, at least partially, activating the autophagy process. These findings provide novel insights into the molecular mechanisms underlying the wound-healing effects of RRP and may pave the way for the development of novel therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2024.118272DOI Listing

Publication Analysis

Top Keywords

fin regeneration
16
mechanisms underlying
12
effects rrp
12
rrp
10
molecular mechanisms
8
wound-healing effects
8
cell proliferation
8
regeneration zebrafish
8
ahr signals
8
fin
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!