Antifungal mechanisms of binary combinations of volatile organic compounds produced by lactic acid bacteria strains against Aspergillusflavus.

Toxicon

College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China. Electronic address:

Published: May 2024

Aspergillus flavus(A. flavus), a common humic fungus known for its ability to infect agricultural products, served as the subject of investigation in this study. The primary objective was to assess the antifungal efficacy and underlying mechanisms of binary combinations of five volatile organic compounds (VOCs) produced by lactic acid bacteria, specifically in their inhibition of A. flavus. This assessment was conducted through a comprehensive analysis, involving biochemical characterization and transcriptomic scrutiny. The results showed that VOCs induce notable morphological abnormalities in A. flavus conidia and hyphae. Furthermore, they disrupt the integrity of the fungal cell membrane and cell wall, resulting in the leakage of intracellular contents and an increase in extracellular electrical conductivity. In terms of cellular components, VOC exposure led to an elevation in malondialdehyde content while concurrently inhibiting the levels of total lipids, ergosterol, soluble proteins, and reducing sugars. Additionally, the impact of VOCs on A. flavus energy metabolism was evident, with significant inhibition observed in the activities of key enzymes, such as Na/K-ATPase, malate dehydrogenase, succinate dehydrogenase, and chitinase. And they were able to inhibit aflatoxin B synthesis. The transcriptomic analysis offered further insights, highlighting that differentially expressed genes (DEGs) were predominantly associated with membrane functionality and enriched in pathways about carbohydrate and amino acid metabolism. Notably, DEGs linked to cellular components and energy-related mechanisms exhibited down-regulation, thereby corroborating the findings from the biochemical analyses. In summary, these results elucidate the principal antifungal mechanisms of VOCs, which encompass the disruption of cell membrane integrity and interference with carbohydrate and amino acid metabolism in A. flavus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2024.107749DOI Listing

Publication Analysis

Top Keywords

antifungal mechanisms
8
mechanisms binary
8
binary combinations
8
combinations volatile
8
volatile organic
8
organic compounds
8
produced lactic
8
lactic acid
8
acid bacteria
8
cell membrane
8

Similar Publications

Systematic review of Neuropsychiatric Toxicity in Second Generation Antifungals with an illustrative Case Reports.

J Acad Consult Liaison Psychiatry

March 2025

Hospices Civils de Lyon, Hôpital Louis Pradel, service de Psychiatrie de liaison, F-69000 Lyon, France.

Background: Second generation triazole antifungals are extended-spectrum drugs that act against yeasts, molds, and dimorphic fungi. These agents include voriconazole, posaconazole, and isavuconazole. Voriconazole may cause neuropsychiatric toxicity such as hallucinations.

View Article and Find Full Text PDF

Citrus fruits, known for their vibrant flavours and health benefits, are susceptible to fungal attacks, particularly from toxigenic fungi, which pose a significant pre- and post-harvest hazard. However, aromatic oils and their nanoparticles may effectively address this issue. Marjoram and fennel oils, alongside their nanoparticles, were extracted, and their aromatic constituents and antimicrobial activities were evaluated.

View Article and Find Full Text PDF

Mucormycosis is a fungal infection caused by Mucorales fungi that cause severe disease and fatality, especially in immunocompromised individuals. Although vaccines and immunotherapeutics have been successful in combating viral and bacterial infections, approved antifungal immunotherapies are yet to be realized. To address this gap, monoclonal antibodies targeting invasive fungal infections have emerged as a promising approach, particularly for immunocompromised patients who are unlikely to maximally benefit from vaccines.

View Article and Find Full Text PDF

Insulin resistance (IR) disrupts hepatic glucose metabolism and mitochondrial function, which contributes to metabolic disorders. The present study examined the effects of tomatine on glucose metabolism in high-glucose-induced IR hepatocytes and explored its underlying mechanisms using AML12 and HepG2 cell models. The results showed that tomatine did not exhibit cytotoxic effects.

View Article and Find Full Text PDF

Background: Ovarian cancer is the most prevalent malignant tumor of the female reproductive system and has the highest mortality rate among gynecological cancers. Columbianetin acetate (CE) is one of the active ingredients of Angelica sinensis, which has good antifungal and anti-inflammatory activities. However, its potential mechanism of action in ovarian cancer remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!