Casein-quaternary chitosan complexes induced the soft assembly of egg white peptide and curcumin for ulcerative colitis alleviation.

Int J Biol Macromol

Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China. Electronic address:

Published: June 2024

Soft assembly of peptide and curcumin (Cur) molecules enables functional integration by finding dynamic equilibrium states through non-covalent interactions. Herein, we developed two soft assembly systems, curcumin-egg white peptides (Cur-EWP) aggregations (AGs) and Cur-EWP-casein-quaternary chitosan (Cur-EWP-CA-QC) nanoparticles (NPs) to comparatively investigate their therapeutic effects on ulcerative colitis in mice and elucidate their underlying mechanism. Results revealed that Cur-EWP AGs, despite gastrointestinal tract instability, exhibited a propensity for swift accumulation within the colorectal region, enriching mucus-associated and short-chain fatty acid (SCAF)-producing bacteria, restoring the intestinal barrier damage. Whereas, Cur-EWP-CA-QC NPs, benefiting from their remarkable stability and exceptional mucosal adsorption properties, not only enhanced permeability of Cur and EWP in the small intestine to activate the immune response and boost tight junction protein expression but also, in their unabsorbed state, regulated the intestinal flora, exerting potent anti-inflammatory activity. Soft assembly of peptides and hydrophobic nutraceuticals could synergize biological activities to modulate chronic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.132107DOI Listing

Publication Analysis

Top Keywords

soft assembly
16
peptide curcumin
8
ulcerative colitis
8
casein-quaternary chitosan
4
chitosan complexes
4
complexes induced
4
soft
4
induced soft
4
assembly
4
assembly egg
4

Similar Publications

Progress in the Development of Flexible Devices Utilizing Protein Nanomaterials.

Nanomaterials (Basel)

February 2025

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.

Flexible devices are soft, lightweight, and portable, making them suitable for large-area applications. These features significantly expand the scope of electronic devices and demonstrate their unique value in various fields, including smart wearable devices, medical and health monitoring, human-computer interaction, and brain-computer interfaces. Protein materials, due to their unique molecular structure, biological properties, sustainability, self-assembly ability, and good biocompatibility, can be applied in electronic devices to significantly enhance the sensitivity, stability, mechanical strength, energy density, and conductivity of the devices.

View Article and Find Full Text PDF

Soft-matter-induced orderings in a solid-state van der Waals heterostructure.

Nat Commun

March 2025

Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, The First Hospital of China Medical University, Shenyang, PR China.

Deoxyribose nucleic acid (DNA), a type of soft matter, is often considered a promising building block to fabricate and investigate hybrid heterostructures with exotic functionalities. However, at this stage, investigations on DNA-enabled nanoelectronics have been largely limited to zero-dimensional (0D) and/or one-dimensional (1D) structures. Exploring their potential in higher dimensions, particularly in combination with hard matter solids such as van der Waals (vdW) two-dimensional (2D) materials, has proven challenging.

View Article and Find Full Text PDF

Structure and dynamics of phytantriol-glycerol mesophases: Insights into the reverse micelle to lamellar phase transition.

J Phys Condens Matter

March 2025

Department of Chemistry, University of Basel, Gebäude 1096 / Mattenstrasse 22, Basel, 4058, SWITZERLAND.

Lipidic mesophases (LMPs) are lyotropic liquid crystals formed by the self-assembly of lipid in water, offering diverse phase symmetries with unique physicochemical properties. However, a fundamental understanding of how the dynamics relate to the composition and structure remains limited. In this study, we substitute water with glycerol, which closely resembles the headgroup structure of phytantriol, as the solvent to explore phytantriol-based LMPs in a pure glycerol environment.

View Article and Find Full Text PDF

Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology.

View Article and Find Full Text PDF

Self-assembled patient-derived tumor-like cell clusters for personalized drug testing in diverse sarcomas.

Cell Rep Med

February 2025

State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China; Peking University Yangtze Center of Future Health Technology, Wuxi 214111, China. Electronic address:

Several patient-derived tumor models have emerged recently. However, soft tissue sarcomas (STSs) present a challenge in developing preclinical drug-testing models due to their non-epithelial and complex nature. Here, we report a model termed patient-derived tumor-like cell clusters (PTCs) derived from STS patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!