This study investigates the fabrication process of copper thin films via thermal evaporation, with precise control over film thickness achieved through-position adjustment. Analysis of the as-fabricated copper films reveals a discernible relationship between grain size (〈〉) and-position, characterized by a phenomenological equation〈D〉XRDn(Z)=〈D〉0n1+32rZ2+158rZ4, which is further supported by a growth exponent () of 0.41 obtained from the analysis. This value aligns well with findings in the literature concerning the growth of copper films, thus underlining the validity and reliability of our experimental outcomes. The resulting crystallites, ranging in size from 20 to 26 nm, exhibit a resistivity within the range of 3.3-4.6Ω · cm. Upon thermal annealing at 200 °C, cuprite CuO thin films are produced, demonstrating crystallite sizes ranging from ∼9 to ∼24 nm with increasing film thickness. The observed monotonic reduction in CuO crystallites relative to film thickness is attributed to a recrystallization process, indicating amorphization when oxygen atoms are introduced, followed by the nucleation and growth of newly formed copper oxide phase. Changes in the optical bandgap of the CuO films, ranging from 2.31 to 2.07 eV, are attributed mainly to the quantum confinement effect, particularly important in CuO with size close than the Bohr exciton diameter (5 nm) of the CuO. Additionally, correlations between refractive index and extinction coefficient with film thickness are observed, notably a linear relationship between refractive index and charge carrier density. Electrical measurements confirm the presence of a p-type semiconductor with carrier concentrations of ∼10cm, showing a slight decrease with film thickness. This phenomenon is likely attributed to escalating film roughness, which introduces supplementary scattering mechanisms for charge carriers, leading to a resistivity increase, especially as the roughness approaches or surpasses the mean free path of charge carriers (8.61 nm). Moreover,calculations on the CuO crystalline phase to investigate the impact of hydrostatic strain on its electronic and optical properties was conducted. We believe that our findings provide crucial insights that support the elucidation of the experimental results. Notably, thinner cuprite films exhibit heightened sensitivity to ethanol gas at room temperature, indicating potential for highly responsive gas sensors, particularly for ethanol breath testing, with significant implications for portable device applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ad47cc | DOI Listing |
Nat Commun
December 2024
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
The discovery of ferromagnetism in van der Waals (vdW) materials has enriched the understanding of two-dimensional (2D) magnetic orders and opened new avenues for fundamental physics research and next generation spintronics. However, achieving ferromagnetic order at room temperature, along with strong perpendicular magnetic anisotropy, remains a significant challenge. In this work, we report wafer-scale growth of vdW ferromagnet FeGaTe using molecular beam epitaxy.
View Article and Find Full Text PDFAdv Mater
December 2024
Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
The development of efficient color conversion layers for μ-LED technology faces significant challenges owing to the limitations of materials that require binders. Binders are typically used to ensure uniform film formation in color-conversion layers, but they often cause optical losses, increase layer thickness, and introduce long-term stability issues. To address the limitations of materials requiring binders, cyclopropyltriphenylphosphonium manganese tetrabromide (CPTPMnBr) is synthesized, a novel lead-free metal halide.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China.
Developing miniaturized low-frequency acoustic sensors with high sensitivity is crucial for diverse applications, including geological monitoring and aerospace exploration. However, the performance of low-frequency acoustic sensor is constrained by the limited mechanical robustness of traditional sensing films at nanoscale thickness. Here, a functionalized graphene oxide (GO)-based Fabry-Perot (FP) low-frequency sensor is proposed, with characteristics of compact size, resistance to electromagnetic interference high-sensitivity low minimum detectable pressure (MDP), and a high signal-to-noise ratio (SNR).
View Article and Find Full Text PDFACS Appl Energy Mater
December 2024
School of Chemistry, University of Bristol, Cantocks Close, BS8 1TS Bristol, U.K.
Rationalizing the role of chemical interactions in the precursor solutions on the structure, morphology, and performance of thin-film CuZnSn(S,Se) (CZTSSe) is key for the development of bifacial and other photovoltaic (PV) device architectures designed by scalable solution-based methods. In this study, we uncover the impact of dimethylformamide (DMF) and isopropanol (IPA) solvent mixtures on cation complexation and rheology of the precursor solution, as well as the corresponding morphology, composition, and PV performance of CZTSSe thin-film grown on fluorine-doped tin oxide (FTO). We find that increasing the proportion of IPA leads to a nonlinear increase in dynamic viscosity due to the strong repulsion between DMF and IPA, which is characterized by an interaction cohesion parameter of 3.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Materials Science and Technology Center (CCTM), Nuclear, and Energy Research Institute (IPEN), University of São Paulo (USP), São Paulo, São Paulo, Brazil.
This study describes a 3D fused deposition modeling (FDM) printing process using a graphene-impregnated polylactic acid (G-PLA) filament to create a new type of rigid, plastic, nonconductive, and anticorrosion layer. Therefore, the possibility of 3D printing a plastic layer using FDM methods is demonstrated herein. A commercial magnet such as N35 NdFeB can be used to produce an efficient shielding film by additive manufacturing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!