The evolutionary conserved YopJ family comprises numerous type-III-secretion system (T3SS) effectors of diverse mammalian and plant pathogens that acetylate host proteins to dampen immune responses. Acetylation is mediated by a central acetyltransferase domain that is flanked by conserved regulatory sequences, while a nonconserved N-terminal extension encodes the T3SS-specific translocation signal. spp. are facultative-intracellular pathogens causing intraerythrocytic bacteremia in their mammalian reservoirs and diverse disease manifestations in incidentally infected humans. Bartonellae do not encode a T3SS, but most species possess a type-IV-secretion system (T4SS) to translocate effector proteins (Beps) into host cells. Here we report that the YopJ homologs present in Bartonellae species represent genuine T4SS effectors. Like YopJ family T3SS effectors of mammalian pathogens, the " YopJ-like effector A" (ByeA) of also targets MAP kinase signaling to dampen proinflammatory responses, however, translocation depends on a functional T4SS. A split NanoLuc luciferase-based translocation assay identified sequences required for T4SS-dependent translocation in conserved regulatory regions at the C-terminus and proximal to the N-terminus of ByeA. The T3SS effectors YopP from and AvrA from Typhimurium were also translocated via the T4SS, while ByeA was not translocated via the T3SS. Our data suggest that YopJ family T3SS effectors may have evolved from an ancestral T4SS effector, such as ByeA of . In this evolutionary scenario, the signal for T4SS-dependent translocation encoded by N- and C-terminal sequences remained functional in the derived T3SS effectors due to the essential role these sequences coincidentally play in regulating acetyltransferase activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11098119PMC
http://dx.doi.org/10.1073/pnas.2310348121DOI Listing

Publication Analysis

Top Keywords

t3ss effectors
20
yopj family
16
effector proteins
8
conserved regulatory
8
family t3ss
8
effector byea
8
t4ss-dependent translocation
8
t3ss
7
translocation
6
t4ss
6

Similar Publications

The flavonoid metabolic pathway genes Ac4CL1, Ac4CL3 and AcHCT1 positively regulate the kiwifruit immune response to Pseudomonas syringae pv. actinidiae.

Plant Mol Biol

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, China.

Psa primarily utilises the type III secretion system (T3SS) to deliver effector proteins (T3Es) into host cells, thereby regulating host immune responses. However, the mechanism by which kiwifruit responds to T3SS remains unclear. To elucidate the molecular reaction of kiwifruit plants to Psa infection, M228 and mutant M228△hrcS strains were employed to inoculate Actinidia chinensis var.

View Article and Find Full Text PDF

The poor prognosis of infections associated with multidrug-resistant can be attributed to several conditions of the patient and virulence factors of the pathogen, such as the type III secretion system (T3SS), which presents the ability to inject four effectors into the host cell: ExoS, ExoT, ExoU and ExoY. The aim of this study was to analyze the distribution of genes through multiplex polymerase chain reaction in strains isolated from patients at a third-level pediatric hospital and their relationships with clinical variables, e.g.

View Article and Find Full Text PDF

is the etiologic agent of the plague. A hallmark of plague is subversion of the host immune response by disrupting host signaling pathways required for inflammation. This non-inflammatory environment permits bacterial colonization and has been shown to be essential for disease manifestation.

View Article and Find Full Text PDF

Pseudomonas syringae lytic transglycosylase HrpH interacts with host ubiquitin ligase ATL2 to modulate plant immunity.

Cell Rep

January 2025

State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Pseudomonas syringae deploys a type III secretion system (T3SS) to deliver effector proteins to facilitate infection of plant cells; however, little is known about the direct interactions between T3SS components and plants. Here, we show that the specialized lytic transglycosylase (SLT) domain of P. syringae pv.

View Article and Find Full Text PDF

Effector proteins secreted via the type III secretion system (T3SS) of nitrogen-fixing rhizobia are key determinants of symbiotic compatibility in legumes. Previous report revealed that the T3SS of Bradyrhizobium sp. DOA9 plays negative effects on Arachis hypogaea symbiosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!