Biodegradable nanocarriers possess enormous potential for use as drug delivery systems that can accomplish controlled and targeted drug release, and a wide range of nanosystems have been reported for the treatment and/or diagnosis of various diseases and disorders. Of the various nanocarriers currently available, liposomes and polymer nanoparticles have been extensively studied and some formulations have already reached the market. However, a combination of properties to create a single hybrid system can give these carriers significant advantages, such as improvement in encapsulation efficacy, higher stability, and active targeting towards specific cells or tissues, over lipid or polymer-based platforms. To this aim, this work presents the formulation of poly(lactic-co-glycolic) acid (PLGA) nanoparticles in the presence of a hyaluronic acid (HA)-phospholipid conjugate (HA-DPPE), which was used to anchor HA onto the nanoparticle surface and therefore create an actively targeted hybrid nanosystem. Furthermore, ionic interactions have been proposed for drug encapsulation, leading us to select the free base form of pentamidine (PTM-B) as the model drug. We herein report the preparation of hybrid nanocarriers that were loaded via ion-pairing between the negatively charged PLGA and HA and the positively charged PTM-B, demonstrating an improved loading capacity compared to PLGA-based nanoparticles. The nanocarriers displayed a size of below 150 nm, a negative zeta potential of -35 mV, a core-shell internal arrangement and high encapsulation efficiency (90%). Finally, the ability to be taken up and exert preferential and receptor-mediated cytotoxicity on cancer cells that overexpress the HA specific receptor (CD44) has been evaluated. Competition assays supported the hypothesis that PLGA/HA-DPPE nanoparticles deliver their cargo within cells in a CD44-dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13346-024-01617-7DOI Listing

Publication Analysis

Top Keywords

nanoparticles
5
targeting pentamidine
4
pentamidine cd44-overexpressing
4
cells
4
cd44-overexpressing cells
4
cells hyaluronated
4
hyaluronated lipid-polymer
4
hybrid
4
lipid-polymer hybrid
4
hybrid nanoparticles
4

Similar Publications

Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques.

View Article and Find Full Text PDF

The aim of the present work is to investigate the photocatalytic degradation of propyl paraben (propyl para-hydroxybenzoate, PrP) using CuO-ZnO-NPs photocatalyst followed by the identification of the oxidation by-products. The CuO-ZnO-NPs material, synthesized using a green chemistry approach, was used as a photocatalyst for the removal of PrP. The nanoparticles were characterized by XRD, XRF, diffuse reflectance spectroscopy, ATG/DTG, FTIR, SEM-EDX, BET and FRX techniques.

View Article and Find Full Text PDF

This study investigates the enhancement of solar cell efficiency using nanofluid cooling systems, focusing on citrate-stabilized and PVP-stabilized silver nanoparticles. Traditional silicon-based and perovskite solar cells were examined to assess the impact of these nanofluids on efficiency improvement and thermal management. A Central Composite Design (CCD) was employed to vary nanoparticle concentration (0.

View Article and Find Full Text PDF

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

Background: The healthcare sector faces a growing threat from the rise of highly resistant microorganisms, particularly Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDR P. aeruginosa). Facing the challenge of antibiotic resistance, nanoparticles have surfaced as promising substitutes for antimicrobial therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!