Unlabelled: the deadly protozoan parasite responsible for malaria, has a tightly regulated gene expression profile closely linked to its intraerythrocytic development cycle. Epigenetic modifiers of the histone acetylation code have been identified as key regulators of the parasite's transcriptome but require further investigation. In this study, we map the genomic distribution of histone deacetylase 1 (PfHDAC1) across the erythrocytic asexual development cycle and find it has a dynamic occupancy over a wide array of developmentally relevant genes. Overexpression of PfHDAC1 results in a progressive increment in parasite load over consecutive rounds of the asexual infection cycle and is associated with enhanced gene expression of multiple families of host cell invasion factors (merozoite surface proteins, rhoptry proteins, etc.) and with increased merozoite invasion efficiency. With the use of class-specific inhibitors, we demonstrate that PfHDAC1 activity in parasites is crucial for timely intraerythrocytic development. Interestingly, overexpression of PfHDAC1 results in decreased sensitivity to frontline-drug dihydroartemisinin in parasites. Furthermore, we identify that artemisinin exposure can interfere with PfHDAC1 abundance and chromatin occupancy, resulting in enrichment over genes implicated in response/resistance to artemisinin. Finally, we identify that dihydroartemisinin exposure can interrupt the catalytic deacetylase activity and post-translational phosphorylation of PfHDAC1, aspects that are crucial for its genomic function. Collectively, our results demonstrate PfHDAC1 to be a regulator of critical functions in asexual parasite development and host invasion, which is responsive to artemisinin exposure stress and deterministic of resistance to it.

Importance: Malaria is a major public health problem, with the parasite causing most of the malaria-associated mortality. It is spread by the bite of infected mosquitoes and results in symptoms such as cyclic fever, chills, and headache. However, if left untreated, it can quickly progress to a more severe and life-threatening form. The World Health Organization currently recommends the use of artemisinin combination therapy, and it has worked as a gold standard for many years. Unfortunately, certain countries in southeast Asia and Africa, burdened with a high prevalence of malaria, have reported cases of drug-resistant infections. One of the major problems in controlling malaria is the emergence of artemisinin resistance. Population genomic studies have identified mutations in the Kelch13 gene as a molecular marker for artemisinin resistance. However, several reports thereafter indicated that Kelch13 is not the main mediator but rather hinted at transcriptional deregulation as a major determinant of drug resistance. Earlier, we identified PfGCN5 as a global regulator of stress-responsive genes, which are known to play a central role in artemisinin resistance generation. In this study, we have identified PfHDAC1, a histone deacetylase as a cell cycle regulator, playing an important role in artemisinin resistance generation. Taken together, our study identified key transcriptional regulators that play an important role in artemisinin resistance generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237754PMC
http://dx.doi.org/10.1128/mbio.02377-23DOI Listing

Publication Analysis

Top Keywords

artemisinin resistance
20
role artemisinin
12
resistance generation
12
artemisinin
10
pfhdac1
9
host cell
8
cell invasion
8
responsive artemisinin
8
gene expression
8
intraerythrocytic development
8

Similar Publications

Ellagic Acid from and Antimalarial Activity of Korean Medicinal Plants.

Molecules

January 2025

Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea.

This study investigates the antimalarial potential of extracts and compounds from various plants used in traditional Korean medicine, in response to the increasing resistance of to standard treatments such as chloroquine and artemisinin. The antimalarial activity screening was conducted on 151 extracts, identifying the top seven candidates, including (50% ethanol and 100% methanol extract), , (hot water and 50% ethanol extract), , and . Among these, was identified as the top priority for further analysis due to its high antimalarial activity and high yield of bioactive compounds.

View Article and Find Full Text PDF

Vesicular mechanisms of drug resistance in apicomplexan parasites.

Microbiol Mol Biol Rev

January 2025

Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.

Vesicular mechanisms of drug resistance are known to exist across prokaryotes and eukaryotes. Vesicles are sacs that form when a lipid bilayer 'bends' to engulf and isolate contents from the cytoplasm or extracellular environment. They have a wide range of functions, including vehicles of communication within and across cells, trafficking of protein intermediates to their rightful organellar destinations, and carriers of substrates destined for autophagy.

View Article and Find Full Text PDF

Emoquine-1: A Hybrid Molecule Efficient against Multidrug-Resistant Parasites, Including the Artemisinin-Resistant Quiescent Stage, and Also Active In Vivo.

J Med Chem

January 2025

Laboratoire de Chimie de Coordination du CNRS, LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse cedex, France.

To challenge the multidrug resistance of malaria parasites, new hybrid compounds were synthesized and evaluated against laboratory strains and multidrug-resistant clinical isolates. Among these hybrids, emoquine-1 was the most active on proliferative , with IC values in the range of 20-55 nM and a high selectivity index with respect to mammalian cells. This drug retained its activity on several multiresistant field isolates from Cambodia and Guiana, exhibited no cross-resistance to artemisinin, and is also very active against the quiescent stage of the artemisinin-resistant parasites, three features that constitute the gold standard for new antimalarial drugs.

View Article and Find Full Text PDF

Monitoring molecular markers associated with antimalarial drug resistance in south-east Senegal from 2021 to 2023.

J Antimicrob Chemother

January 2025

Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal.

Background: Since 2006, artemisinin-based combination therapies (ACTs) have been introduced in Senegal in response to chloroquine resistance (CQ-R) and have shown high efficacy against Plasmodium falciparum. However, the detection of the PfKelch13R515K mutation in Kaolack, which confers artemisinin resistance in vitro, highlights the urgency of strengthening antimalarial drug surveillance to achieve malaria elimination by 2030.

Objective: To assess the proportion of P.

View Article and Find Full Text PDF

Haplotypes of Chloroquine Resistance Marker Genes Among Uncomplicated Malaria Cases in Lagos, Nigeria.

Biochem Genet

January 2025

Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, 200025, People's Republic of China.

Drug resistance resulting from mutations in Plasmodium falciparum, that caused the failure of previously effective malaria drugs, has continued to threaten the global malaria elimination goal. This study describes the profiles of P. falciparum chloroquine resistance transporter (Pfcrt) and P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!