A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identifying temporal pathways using biomarkers in the presence of latent non-Gaussian components. | LitMetric

Identifying temporal pathways using biomarkers in the presence of latent non-Gaussian components.

Biometrics

Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, United States.

Published: March 2024

Time-series data collected from a network of random variables are useful for identifying temporal pathways among the network nodes. Observed measurements may contain multiple sources of signals and noises, including Gaussian signals of interest and non-Gaussian noises, including artifacts, structured noise, and other unobserved factors (eg, genetic risk factors, disease susceptibility). Existing methods, including vector autoregression (VAR) and dynamic causal modeling do not account for unobserved non-Gaussian components. Furthermore, existing methods cannot effectively distinguish contemporaneous relationships from temporal relations. In this work, we propose a novel method to identify latent temporal pathways using time-series biomarker data collected from multiple subjects. The model adjusts for the non-Gaussian components and separates the temporal network from the contemporaneous network. Specifically, an independent component analysis (ICA) is used to extract the unobserved non-Gaussian components, and residuals are used to estimate the contemporaneous and temporal networks among the node variables based on method of moments. The algorithm is fast and can easily scale up. We derive the identifiability and the asymptotic properties of the temporal and contemporaneous networks. We demonstrate superior performance of our method by extensive simulations and an application to a study of attention-deficit/hyperactivity disorder (ADHD), where we analyze the temporal relationships between brain regional biomarkers. We find that temporal network edges were across different brain regions, while most contemporaneous network edges were bilateral between the same regions and belong to a subset of the functional connectivity network.

Download full-text PDF

Source
http://dx.doi.org/10.1093/biomtc/ujae033DOI Listing

Publication Analysis

Top Keywords

non-gaussian components
16
temporal pathways
12
identifying temporal
8
data collected
8
temporal
8
noises including
8
existing methods
8
unobserved non-gaussian
8
temporal network
8
contemporaneous network
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!