Chemiluminescence (CL), especially commercialized CL immunoassay (CLIA), is normally performed within the eye-visible region of the spectrum by exploiting the electronic-transition-related emission of the molecule luminophore. Herein, dual-stabilizers-capped CdTe nanocrystals (NCs) is employed as a model of nanoparticulated luminophore to finely tune the CL color with superior color purity. Initialized by oxidizing the CdTe NCs with potassium periodate (KIO), intermediates of the reactive oxygen species (ROS) tend to charge CdTe NCs in both series-connection and parallel-connection routes and dominate the charge-transfer CL of CdTe NCs. The CdTe NCs/KIO system can exhibit color-tunable CL with the maximum emission wavelength shifted from 694 nm to 801 nm, and the red-shift span is over 100 nm. Both PL and CL of each of the CdTe NCs are bandgap-engineered; the change in the NCs surface state via CL reaction enables CL of each of the CdTe NCs to be red-shifted for ∼20 nm to PL, while the change in the NCs surface state via labeling CdTe NCs to secondary-antibody (Ab) enables CL of the CdTe NCs-Ab conjugates to be red-shifted for another ∼20 nm to bare CdTe NCs. The CL of CdTe753-Ab/KIO is ∼791 nm, which can perform near-infrared CL immunoassay and semi-automatically determined procalcitonin (PCT) on commercialized in vitro diagnosis (IVD) instruments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c00549DOI Listing

Publication Analysis

Top Keywords

cdte ncs
28
cdte
11
ncs
10
cdte nanocrystals
8
change ncs
8
ncs surface
8
surface state
8
enables cdte
8
red-shifted ∼20
8
finely-tuning chemiluminescent
4

Similar Publications

Chemiluminescence (CL), especially commercialized CL immunoassay (CLIA), is normally performed within the eye-visible region of the spectrum by exploiting the electronic-transition-related emission of the molecule luminophore. Herein, dual-stabilizers-capped CdTe nanocrystals (NCs) is employed as a model of nanoparticulated luminophore to finely tune the CL color with superior color purity. Initialized by oxidizing the CdTe NCs with potassium periodate (KIO), intermediates of the reactive oxygen species (ROS) tend to charge CdTe NCs in both series-connection and parallel-connection routes and dominate the charge-transfer CL of CdTe NCs.

View Article and Find Full Text PDF

In this study, CdTeSe (0 ≤ ≤ 1) and CdTeSe:Gd % ( = 0-8.05) alloy semiconductor nanocrystals (NCs) were prepared by wet chemical method. The presence and composition of the elements in the sample were determined by energy dispersive X-ray (EDX) spectroscopy and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

In this work, a potential-resolved electrochemiluminescence (ECL) multiplex immunoassay (MIA) was developed using zirconium-based metal-organic framework (MOF) nanoparticles with intense self-ECL as an anodic ECL tag and CdTe nanocrystals (NCs) as a cathodic ECL tag. ECL luminophore 5,5'-(anthracene-9,10-diyl)diisophthalic acid (HADIP) and coreactant hexamethylenetetramine (HMT) bound to zirconium nodes in the MOF, giving Zr-ADIP-HMT nanoparticles. Benefiting from the intrareticular charge transfer (ICT) between the oxidized ligands of HADIP and HMT via hydrogen bonds, the intense self-ECL from Zr-ADIP-HMT was applied to the potential-resolved ECL MIA without an exogenous anodic coreactant, which can eliminate detrimental effects of multiplex coreactants and anodic ECL emission from CdTe NCs.

View Article and Find Full Text PDF

Dual-potential encoded electrochemiluminescence for multiplexed gene assay with one luminophore as tag.

Biosens Bioelectron

September 2023

School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China. Electronic address:

Multiplexed gene assay for simultaneously detecting the multi-targets of nucleic acids is strongly anticipated for the accurate diseases diagnosis and prediction, and all commercial available gene assays for IVD are a kind of single-target assay. Herein, a dual-potential encoded and coreactant-free electrochemiluminescence (ECL) strategy is proposed for the multiplexed gene assay, which can be conveniently carried out by directly oxidizing the same luminescent tag of dual-stabilizers-capped CdTe nanocrystals (NCs). The CdTe NCs linked with sulfhydryl-RNA via Cd-S bond merely exhibits one ECL process around 0.

View Article and Find Full Text PDF

The method of affordable colloidal synthesis of nanocrystalline CuZnSnS (CZTS) is developed, which is suitable for obtaining bare CZTS nanocrystals (NCs), cation substituted CZTS NCs, and CZTS-based hetero-NCs. For the hetero-NCs, the synthesized in advance NCs of another material are introduced into the reaction solution so that the formation of CZTS takes place preferably on these "seed" NCs. Raman spectroscopy is used as the primary method of structural characterization of the NCs in this work because it is very sensitive to the CZTS structure and allows to probe NCs both in solutions and films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!