Scope: Milk extracellular vesicles (EVs) are nanosized particles with potential immune bioactivities. This study examines their fate during in vitro infant gastrointestinal digestion (GI).
Methods And Results: Bovine milk is digested using the in vitro INFOGEST method, adjusted for the infant. To unravel the contribution of digestive enzymes from bile, milk is treated with digestive enzymes, bile, or a combination of both. EVs are collected posttreatment using differential ultracentrifugation. EVs characterization includes electrophoresis, immunoblotting, nanoparticle tracking analysis, and atomic force microscopy. EVs protein markers programmed cell death 6-interacting protein (ALIX), tumor susceptibility gene 101 (TSG101), cluster of differentiation 9 (CD9), and xanthine dehydrogenase (XDH) are detected after gastric digestion (G60), but their signal intensity is significantly reduced by intestinal conditions (p < 0.05). Enzyme digestion, compared to bile treatment (I60 + bile), results in a significant reduction of signal intensities for TSG101 and CD9 (p < 0.05). Nanoparticle tracking analysis shows a significant reduction (p < 0.05) of EV numbers at the end of the intestinal phase. EVs are detected by atomic force microscopy at the end of the intestinal phase, showing that intact EVs can survive upper gut digestion.
Conclusion: Intact EVs can be found at the end of the intestinal phase. However, digestive enzymes and bile reduce the quantity and characteristics of EVs, with digestive enzymes playing a larger role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mnfr.202300620 | DOI Listing |
Proteins
January 2025
Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
Lactoperoxidase (LPO) is a heme-containing mammalian enzyme that is found in the extracellular fluids of animals including plasma, saliva, airway epithelial and nasal lining fluids, milk, tears, and gastric juices. LPO uses hydrogen peroxide (HO) to convert substrates into oxidized products. Previous structural studies have shown that HO, CO, and CN are bound to LPO at the distal heme cavity by coordinating with heme iron.
View Article and Find Full Text PDFFront Nutr
December 2024
Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, China.
Milk-derived extracellular vesicles (EVs) have various functions, including immune regulation and promoting intestinal development. These EVs have substantial potential for application in infant formula and functional foods development. In addition, numerous studies have shown that milk-derived EVs carry proteins, lipids, and nucleic acids away from their parental cells, acting as messengers between cells.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, China.
The increasing occurrence of infections caused by multidrug-resistant (MDR) bacteria drives the need for new antibacterial drugs. Due to the current lack of antibiotic discovery and development, new strategies to fight MDR bacteria are urgently needed. Efforts to develop new antibiotic adjuvants to increase the effectiveness of existing antibiotics and design delivery systems are essential to address this issue.
View Article and Find Full Text PDFFood Funct
December 2024
Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt.
Camel milk has a unique composition that sets it apart from other types of animal milk, which has captured the interest of medical and scientific communities. Extracellular vesicles (EVs) mainly contain exosomes (Exos, 30-200 nm) and microvesicles (MVs, 200-1000 nm). Camel milk EVs, particularly Exos, which we named EVs/Exos, have arisen as a fascinating area of scientific inquiry, holding enormous potential for the future of biomedicine due to their anticancer, antibacterial, antidiabetic nephropathy, and immunostimulatory impacts.
View Article and Find Full Text PDFMol Med
December 2024
Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
Necrotizing enterocolitis (NEC) is a severe inflammatory and necrotizing disease of the intestine that primarily affects the neonates, particularly premature infants. It has a high incidence of approximately 8.9% in extremely preterm infants, with a mortality rate ranging from 20 to 30%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!