Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nano- and microplastic particles are a global and emerging environmental issue that might pose potential threats to human health. The present work exploits artificial intelligence (AI) to identify nano- and microplastics in water by monitoring the interaction of the sample with a sensitive surface. An estrogen receptor (ER) grafted onto a gold surface, realized on a nonexpensive and easy-to-produce plastic optical fiber (POF) platform in order to excite a surface plasmon resonance (SPR) phenomenon, has been developed in order to carry out a "smart" sensitive interface (ER-SPR-POF interface). The ER-SPR-POF interface offers output data useful for exploiting a machine learning-based approach to achieve nano- and microplastic particle sensors. This work developed a proof-of-concept sensor through a training phase carried out by different particles, in terms of materials and size. The experimental results have demonstrated that the proposed "smart" ER-SPR-POF interface combined with AI can be used to identify the kind of particles in terms of the materials (polystyrene; poly(methyl methacrylate)) and size (20 μm; 100 nm) with an accuracy of 90.3%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11064004 | PMC |
http://dx.doi.org/10.1021/acsomega.3c09485 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!