In this study, we introduce a new nondestructive measurement technique based on a thermal approach for the determination of substandard amoxicillin. The quality control of amoxicillin is critical for patient safety, and one of the essential parameters for its evaluation is the content of the active ingredient. Traditional methods for assessing amoxicillin content are defined by their time-consuming nature, reliance on skilled personnel, and frequent necessity for specific reagents. The proposed device aims to provide a rapid and low-cost alternative that can accurately measure the amoxicillin content without damaging the sample. The method validation results indicate coefficient of determination () exceeding 0.99, with percent recoveries falling within the range of 98.70-103.40%. The calculated values for limit of detection and limit of quantitation were determined to be 28.11 and 85.17 mg/L, respectively. Our experiments employed amoxicillin samples with predetermined concentrations, all of which were below the standard quality. It was observed that the proposed analytical device effectively quantifies the amoxicillin content in aqueous solutions. Each measurement took no more than 10 min, underscoring the efficiency of the analysis process. The experiments were validated through independent testing at the Government Pharmaceutical Organization in Thailand and the department of engineering science in Oxford, which provides strong evidence for the effectiveness and robustness of the technique. Overall, this study demonstrates the feasibility of using a thermal approach for the nondestructive measurement of substandard amoxicillin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11064199 | PMC |
http://dx.doi.org/10.1021/acsomega.4c00536 | DOI Listing |
Comput Methods Biomech Biomed Engin
January 2025
Department of Orthopedics and Traumatology, Izmir Bozyaka Education and Research Hospital, Izmir, Turkey.
This study introduces a novel anchor-type proximal femoral nail (AT-PFN) to improve the bone-fixation integrity over the standard screw-type nail (SST-PFN). Quasi-static incremental cyclic load test was performed to investigate load-displacement, cumulative deformation energy, time-strain, and backbone curves. The finite element analysis (FEA) was implemented to identify the stress and strain distributions.
View Article and Find Full Text PDFJ Biomed Opt
February 2025
National Institute of Standards and Technology, Applied Physics Division, Boulder, Colorado, United States.
Significance: Developments of anti-gametocyte drugs have been delayed due to insufficient understanding of gametocyte biology. We report a systematic workflow of data processing algorithms to quantify changes in the absorption spectrum and cell morphology of single malaria-infected erythrocytes. These changes may serve as biomarkers instrumental for the future development of antimalarial strategies, especially for anti-gametocyte drug design and testing.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
Liquid biopsies are expected to advance cancer management, and particularly physical cues are gaining attention for indicating tumorigenesis and metastasis. Atomic force microscopy (AFM) has become a standard and important tool for detecting the mechanical properties of single living cells, but studies of developing AFM-based methods to efficiently measure the mechanical properties of circulating tumor cells (CTCs) in liquid biopsy for clinical utility are still scarce. Herein, we present a proof-of-concept study based on the complementary combination of AFM and microfluidics, which allows label-free sorting of individual CTCs and subsequent automated AFM measurements of the mechanical properties of CTCs.
View Article and Find Full Text PDFCurr Environ Health Rep
January 2025
School of Health Sciences, Purdue University, West-Lafayette, IN, 47906, USA.
Purpose Of Review: This review explores the use of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray Fluorescence (XRF) for quantifying metals and metalloids in biological matrices such as hair, nails, blood, bone, and tissue. It provides a comprehensive overview of these methodologies, detailing their technological limitations, application scopes, and practical considerations for selection in both laboratory and field settings. By examining traditional and novel aspects of each method, this review aims to guide researchers and clinical practitioners in choosing the most suitable analytical tool based on their specific needs for sensitivity, precision, speed, and sample preparation.
View Article and Find Full Text PDFUltrasonics
January 2025
School of Information Science and Technology, Beijing University of Technology, Beijing 100124 China.
Carbon steel and low alloy steel are pearlitic heat-resistant steels with a lamellar microstructure. There are good mechanical properties and are widely used in crucial components of high-temperature pressure. However, long-term service in high-temperature environments can easily lead to material degradation, including spheroidization, graphitization, and thermal aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!