Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Madecassoside, a triterpenoid saponin compound mainly isolated from the gotu kola herb (), shows an extensive range of biological activities, including antiapoptotic, antioxidant, anti-inflammatory, moisturizing, neuroprotective, and wound healing effects. It has been highly used in the management of eczema, skin wounds, and other diseases. Due to poor oral bioavailability, membrane permeability, and intestinal absorption, the clinical application of the madecassoside is limited. Hence, a drug carrier system is needed that not only sustains the release of the madecassoside but also overcomes the drawbacks associated with its administration. Therefore, the authors prepared novel pH-responsive chitosan-based nanogels for the sustained release of madecassoside. Free radical polymerization technique was used for cross-linking of polymer chitosan and monomer methacrylic acid in the presence of cross-linker N',N'-methylene bis(acrylamide). The decrease in polymer crystallinity after polymerization and development of nanogels was demonstrated by XRD and FTIR analysis. The effects of nanogel contents on polymer volume, sol-gel analysis, swelling, drug loading, and release were investigated. Results indicated that high swelling and maximum release of the drug occurred at pH 7.4 compared to pH 1.2 and 4.6, indicating the excellent pH-sensitive nature of the engineered nanogels. High swelling and drug release were perceived with the integration of a high quantity of chitosan, while a decline was observed with the high integration of N',N'-methylene bis(acrylamide) and methacrylic acid contents. The same effects of nanogel contents were shown for drug loading too. Sol fraction was reduced, while gel fraction was enhanced by increasing the chitosan load, N',N'-methylene bis(acrylamide), and methacrylic acid. The Korsmeyer-Peppas model of kinetics was trailed by all nanogel formulations with non-Fickian diffusion. The results demonstrated that prepared nanogels can be employed for sustained release of the madecassoside.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11064187 | PMC |
http://dx.doi.org/10.1021/acsomega.4c00461 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!