A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of TiO Nanofillers on the Mechanical and Abrasive Wear Properties of Epoxy Reinforced with Carbon Fabric Hybrid Composites. | LitMetric

Recent studies show that nanofillers greatly contribute to the increase in the mechanical and abrasive behaviors of the polymer composite. In the current study, epoxy composites were made by hand lay-up with the reinforcement of carbon fabric and titanium dioxide (TiO) nanoparticles as secondary reinforcement in weight percentages of 0.5, 1.0, and 2.0. Hardness, tensile, and abrasive wear tests have been carried out for the fabricated composites. The obtained results confirm that as the percentage of filler addition increases, hardness of the carbon epoxy (CE) composite increases, and significant enhancement of 10.25% hardness is confirmed in 2 wt % nano TiO-added CE composite. The CE composite filled with 2 wt % of TiO nanofiller shows 15.77 and 9.15% improvement of tensile strength and modulus, respectively, compared to unfilled CE composites. The abrasive wear volume exhibits a nearly linear increasing trend as the abrading distance increases. In addition, it is discovered that the abrasive wear volume is greater for higher applied loads. The inclusion of nano TiO reduced the wear loss in the CE composite for all abrading distances, regardless of the load, low or high. The scanning electron microscopy analysis of worn surfaces was carried out to analyze the contribution of the filler to improve the wear resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11064022PMC
http://dx.doi.org/10.1021/acsomega.3c07830DOI Listing

Publication Analysis

Top Keywords

abrasive wear
16
mechanical abrasive
8
carbon fabric
8
wear volume
8
wear
6
abrasive
5
composite
5
tio
4
tio nanofillers
4
nanofillers mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!