Biopolymers have gained significant importance in the field of biomedicine, particularly in addressing organ and tissue loss in living organisms. These polymers exhibit temporary functionality during treatment and undergo biodegradation once their intended purpose is fulfilled. The diverse characteristics of these biopolymers expand their range of applications, albeit necessitating extensive experimentation and a time commitment for thorough investigation. Computational models have emerged as a promising avenue for predictive analysis, complementing traditional experimental methods. In this study, we delve into the degradation dynamics of polyester materials with a specific emphasis on the hydrolysis process. We employed an appropriate reaction diffusion model to unveil the underlying mechanisms governing material weight loss and erosion within a two-dimensional framework for a rectangular slice of the implant. By bridging computational modeling with empirical research, this study provides valuable insights into the behavior of biopolymers, contributing to a deeper understanding of these materials and their potential for advanced biomedical applications. To illustrate this framework's effectiveness, we conducted a case study using experimental data from the literature, focusing on poly(d,l-lactic acid) material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11063999PMC
http://dx.doi.org/10.1021/acsomega.3c10112DOI Listing

Publication Analysis

Top Keywords

polyester materials
8
biomedical applications
8
computational analysis
4
analysis biodegradable
4
biodegradable polyester
4
materials biomedical
4
applications investigating
4
investigating molecular
4
molecular weight
4
weight change
4

Similar Publications

This study explores and discusses the design, the manufacturing and the morphology of three-dimensional (3D) multilayered weft interlaced woven fabrics using stainless steel fibers on the electromagnetic shielding efficiency (SE). Design solutions of 3D multilayered interlaced fabrics in relation to electromagnetic shielding efficiency are still not sufficiently investigated. Moreover, this study aims to analyze the differences in the internal geometry of 3D multilayered weft interlaced fabrics with different number of layers and frequency of connecting points in multilayered woven fabrics on electromagnetic SE.

View Article and Find Full Text PDF

Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.

View Article and Find Full Text PDF

Pelagic shark intestine as a potential temporary sink for plastic and non-plastic particles.

Mar Environ Res

January 2025

College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China.

Highly migratory pelagic sharks have the potential to serve as carriers of particle contamination in a vast three-dimensional space. We investigate the occurrence, abundance and characteristics of plastic and non-plastic particles in the scroll intestine of the blue shark (Prionace glauca), one of the most abundant pelagic shark species worldwide. We detected both plastic and non-plastic particles in all sections of the intestine, with the posterior region exhibiting the highest concentration.

View Article and Find Full Text PDF

Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing methods. Wind turbine blades, in particular, are a problematic component in the recycling process due to their complex material composition.

View Article and Find Full Text PDF

Composites are increasingly being modified with various types of fillers and nanofillers. These materials have attracted much attention due to the improvement in their properties compared to traditional composite materials. In the case of advanced technologies, adding additives to the matrix has created a number of possibilities for use in many industries, from electronics to mechanics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!