Landslide susceptibility assessment (LSA) is fundamental for managing landslide geological disasters. This study presents a deep learning approach (DNN-MSFM) designed to enhance LSA modeling, particularly addressing limitations caused by the unbalanced distribution of data samples in applied datasets. DNN-MSFM approach combines a deep neural network (DNN) and a mean squared false misclassification loss function (MSFM) to handle unbalanced samples from the algorithmic perspective. The model's performance was evaluated on an unbalanced dataset containing mapping units' records of 293 landslide samples and 653 non-landslide samples from the Baota District, China. Its effectiveness was assessed through statistical metrics and compared against DNN and Support Vector Machine (SVM) basic models. The results demonstrated a significant performance enhancement from the DNN-MSFM (OverallAccuracy = 0.889 and area under the receiver operating characteristic curve (AUC) = 0.84), indicating its effectiveness in learning the underlying landslide susceptibility features and demonstrating its ability to provide improved predictions even in areas with unbalanced landslide samples. Moreover, the study emphasizes the importance of considering balanced loss functions in training DNN under various imbalance degrees and contributes to expanding the applicability of DNN in LSA modeling. Also, this study builds a foundation for further enhancements of deep learning methods for geological disaster assessments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11068606PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e30107DOI Listing

Publication Analysis

Top Keywords

landslide susceptibility
12
deep learning
12
susceptibility assessment
8
unbalanced samples
8
lsa modeling
8
landslide samples
8
landslide
6
samples
6
unbalanced
5
deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!