The successful commercialization of direct methanol fuel cells (DMFCs) is hindered by inadequate methanol oxidation activity and anode catalyst longevity. Efficient and cost-effective electrode materials are imperative in the widespread use of DMFCs. While Platinum (Pt) remains the primary component of anodic methanol oxidation reaction (MOR) electrocatalysts, its utilization alone in DMFC systems is limited due to carbon monoxide (CO) poisoning, instability, methanol crossover, and high cost. These limitations impede the economic feasibility of Pt as an electrocatalyst. Herein, we present the use of powdered activated carbon (PAC) and granular activated carbon (GAC), both sourced from macadamia nut shells (MNS), a type of biomass. These bio-based carbon materials are integrated into hybrid supports with reduced graphene oxide (rGO), aiming to enhance the performance and reduce the production cost of the Pt electrocatalyst. Electrochemical and physicochemical characterizations of the synthesized catalysts, including Pt-rGO/PAC-1:1, Pt-rGO/PAC-1:2, Pt-rGO/GAC-1:1, and Pt-rGO/GAC-1:2, were conducted. X-ray diffraction analysis revealed crystallite sizes ranging from 1.18 nm to 1.68 nm. High-resolution transmission electron microscopy (HRTEM) images with average particle sizes ranging from 1.91 nm to 2.72 nm demonstrated spherical dispersion of Pt nanoparticles with some agglomeration across all catalysts. The electrochemical active surface area (ECSA) was determined, with Pt-rGO/GAC-1:1 exhibiting the highest ECSA of 73.53 m g. Despite its high ECSA, Pt-rGO/GAC-1:1 displayed the lowest methanol oxidation reaction (MOR) current density, indicating active sites with poor catalytic efficiency. Pt-rGO/PAC-1:1 and Pt-rGO/PAC-1:2 exhibited the highest MOR current densities of 0.77 mA*cm and 0.74 mA*cm, respectively. Moreover, Pt-rGO/PAC-1:2 and Pt-rGO/PAC-1:1 demonstrated superior electrocatalytic mass (specific) activities of 7.55 mA/mg (0.025 mA*cm) and 7.25 mA/mg (0.021 mA*cm), respectively. Chronoamperometry tests revealed Pt-rGO/PAC-1:2 and Pt-rGO/PAC-1:1 as the most stable catalysts. Additionally, they exhibited the lowest charge transfer resistances and highest MOR current densities after durability tests, highlighting their potential for DMFC applications. The synthesized Pt supported on PACs hybrids demonstrated remarkable catalytic performance, stability, and CO tolerance, highlighting their potential for enhancing DMFC efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11068541PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e29907DOI Listing

Publication Analysis

Top Keywords

methanol oxidation
12
mor current
12
direct methanol
8
methanol fuel
8
fuel cells
8
oxidation reaction
8
reaction mor
8
activated carbon
8
pt-rgo/pac-11 pt-rgo/pac-12
8
sizes ranging
8

Similar Publications

Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene , which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes.

View Article and Find Full Text PDF

Since water is both a product and a common reactant impurity in the (partial) methanol oxidation to methyl formate (MeFo) on gold, its effect on the isothermal selectivity to methyl formate was investigated under well-defined single-collision conditions employing pulsed molecular beam experiments and in situ IRAS measurements. Both a flat Au(111) and a stepped Au(332) surface were used as model catalysts to elucidate how water affects the reactivity of low-coordinated step sites as compared to (111) terrace sites employing a range of reaction conditions. The interactions of water with methanol/methoxy as well as with oxygen species are addressed.

View Article and Find Full Text PDF

Renal ischemia-reperfusion (IR) induces tissue hypoxia, resulting in disrupted energy metabolism and heightened oxidative stress. These factors contribute to tubular cell damage, which is a leading cause of acute kidney injury (AKI) and can progress to chronic kidney disease (CKD). The excessive generation of reactive oxygen species (ROS) plays a crucial role in the pathogenesis of AKI.

View Article and Find Full Text PDF

Incorporating Indium Oxide into Microplasma Reactor for CO Conversion to Methanol.

Small Methods

January 2025

Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, Changchun, 130024, China.

The clean conversion of CO is a strategic issue for addressing global climate change and advancing energy transformation. While the current clean CO conversion is limited to the H pyrolysis process, using HO as a proton source is more promising and sustainable. A microplasma discharge method is developed, driven by electricity, and utilized for CO conversion with HO.

View Article and Find Full Text PDF

Electrochemical oxidation of small molecules shows great promise to substitute oxygen evolution reaction (OER) or hydrogen oxidation reaction (HOR) to enhance reaction kinetics and reduce energy consumption, as well as produce high-valued chemicals or serve as fuels. For these oxidation reactions, high-valence metal sites generated at oxidative potentials are typically considered as active sites to trigger the oxidation process of small molecules. Isolated atom site catalysts (IASCs) have been developed as an ideal system to precisely regulate the oxidation state and coordination environment of single-metal centers, and thus optimize their catalytic property.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!