Current therapeutic approaches for skin cancer face significant challenges, including wound infection, delayed skin regeneration, and tumor recurrence. To overcome these challenges, an injectable adhesive near-infrared (NIR)-responsive hydrogel with time-dependent enhancement in viscosity is developed for combined melanoma therapy and antibacterial wound healing acceleration. The multifunctional hydrogel is prepared through the chemical crosslinking between poly(methyl vinyl ether--maleic acid) and gelatin, followed by the incorporation of CuO nanosheets and allantoin. The synergistic inherent antibacterial potential of CuO nanosheets, the regenerative and smoothing effect of allantoin, the extracellular matrix-mimicking effect of gelatin, and the desirable swelling behavior of the hydrogel results in fast wound recovery after photothermal ablation of the tumor. Additionally, the hydrogel can serve as an alternative to sutures owing to its tissue adhesiveness ability, which can further render it the merits for accelerated repair of abdominal lesions while acting as a biocompatible barrier to prevent peritoneal adhesion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11066557PMC
http://dx.doi.org/10.1016/j.mtbio.2024.101062DOI Listing

Publication Analysis

Top Keywords

antibacterial wound
8
wound healing
8
cuo nanosheets
8
hydrogel
5
nir-responsive injectable
4
injectable hydrogel
4
hydrogel cross-linked
4
cross-linked homobifunctional
4
homobifunctional peg
4
peg photo-hyperthermia
4

Similar Publications

Objective: To investigate the association between postoperative antibiotic prophylaxis and the risk of infections leading to implant explantation or hospitalization, with a follow-up of up to 12 years.

Study Design: Retrospective cohort study.

Setting: Tertiary medical institution.

View Article and Find Full Text PDF

Introduction: Effective antimicrobial stewardship programs require data on antimicrobial consumption (AMC) and utilization (AMU) to guide interventions. However, such data is often scarce in low-resource settings. We describe the consumption and utilization of antibiotics at a large tertiary-level hospital in Uganda.

View Article and Find Full Text PDF

Fungal quorum sensing molecules as potential drugs in the treatment of chronic wounds and their delivery.

Expert Opin Drug Deliv

January 2025

Smart Materials, Istituto Italiano di Tecnologia, Genova, Italy.

Introduction: Chronic non-healing wounds have emerged as a significant global healthcare challenge. Biofilm induced wound infections has been widely acknowledged. Despite the advanced understanding of biofilm formation, the existing approaches for diagnosing biofilms in wounds remain considerably suboptimal.

View Article and Find Full Text PDF

Managing diabetic wounds is a significant challenge for healthcare professionals since severe complications and delayed recovery greatly impact the patients' quality of life. This article aimed to explore various factors affecting diabetic wound healing, the mechanism of wound healing, and potential natural products having wound healing capability. It focuses on mechanisms of action and the therapeutic effectiveness of the compounds employed in the management of diabetic wounds.

View Article and Find Full Text PDF

Thiol-terminated -halamine ligands to photothermal gold nanorods for synergistically combating antibiotic-resistant bacteria.

Soft Matter

January 2025

College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, P. R. China.

Bio-friendly antibacterial -halamine polymers were used to modify gold nanorods (GNR@pAMPS-Cl), which showed excellent antimicrobial activity against antibiotic-resistant bacteria and accelerated the healing of MRSA-infected wounds. This work provides a new strategy for the preparation of nanoscale antibacterial materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!