Directional motility is an essential property of cells. Despite its enormous relevance in many fundamental physiological and pathological processes, how cells control their locomotion movements remains an unresolved question. Here, we have addressed the systemic processes driving the directed locomotion of cells. Specifically, we have performed an exhaustive study analyzing the trajectories of 700 individual cells belonging to three different species (, , and ) in four different scenarios: in absence of stimuli, under an electric field (galvanotaxis), in a chemotactic gradient (chemotaxis), and under simultaneous galvanotactic and chemotactic stimuli. All movements were analyzed using advanced quantitative tools. The results show that the trajectories are mainly characterized by coherent integrative responses that operate at the global cellular scale. These systemic migratory movements depend on the cooperative nonlinear interaction of most, if not all, molecular components of cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11067954PMC
http://dx.doi.org/10.1093/pnasnexus/pgae171DOI Listing

Publication Analysis

Top Keywords

driving directed
8
directed locomotion
8
cells
6
systemic cellular
4
cellular migration
4
migration forces
4
forces driving
4
locomotion movement
4
movement cells
4
cells directional
4

Similar Publications

An investigation of the evolutionary characteristics and internal driving mechanisms of territorial space since the reform and opening up is essential. The study will guide the orderly development and rational layout of territorial space, as well as achievement transformation and high-quality development in Shanxi Province. We used land use data from 1980 to 2020, which was divided into four periods, to examine the changes in production-living-ecological spatial pattern in Shanxi Province.

View Article and Find Full Text PDF

Urban resilience assessment framework and spatiotemporal dynamics in Hubei, China.

Sci Rep

December 2024

School of Resource and Environmental Sciences, Wuhan University, 129 Luoyu Road, Wuhan, 430079, Hubei Province, China.

Building resilient cities has become an emerging risk management strategy, thus it is necessary to make a scientific evaluation on urban resilience. In this study, both the Driving Force-Pressure-State-Impact-Response (DPSIR) framework and the BP neural network are innovatively adopted to construct a comprehensive urban resilience evaluation system. Prefecture-level cities in Hubei Province are examined for empirical analysis.

View Article and Find Full Text PDF

Traditional sprayers are limited to applying spray mixture solely to the upper surfaces of crops. To overcome this limitation, a variable angle spraying machine (VASM) was designed using a linkage system. This machine enables the adjustment of both the spray position and angle through a single input signal, facilitating multi-directional spraying from the top to the bottom of crops.

View Article and Find Full Text PDF

Wearable robots are often powered by elastic actuators, which can mimic the intrinsic compliance observed in human joints, contributing to safe and seamless interaction. However, due to their increased complexity, when compared to direct drives, elastic actuators are susceptible to faults, which pose significant challenges, potentially compromising user experience and safety during interaction. In this article, we developed a fault-tolerant control strategy for torque assistance in a knee exoskeleton and investigated user experience during a walking task while emulating faults.

View Article and Find Full Text PDF

Differences in the efficiency and mechanisms of different iron-based materials driving synchronous nitrogen and phosphorus removal.

Environ Res

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China. Electronic address:

Iron-dependent denitrification has been substantially investigated worldwide due to the advantages of low cost, high efficiency, and synchronized phosphorous removal. However, differences in nitrogen metabolism processes with different iron-based materials as electron donors have not been systematically studied. This study investigated the efficacy of nitrogen and phosphate removal using various iron-based materials as electron donors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!