A Review on Enhancing the Life of Teeth by Toothpaste Containing Bioactive Glass Particles.

Curr Oral Health Rep

Center of Dental Medicine, Clinic of Chewing Function Disturbances and Dental Biomaterials, University of Zurich, Zurich, Switzerland.

Published: February 2024

Purpose Of Review: Dental caries or tooth decay is one of the communal problems in the world which can affect not only the oral health but also the general health conditions. The main objective of this systematic review is to explore the efficacy of bioactive glass-based toothpastes against cariogenic bacteria.

Recent Findings: Bioactive glass particulates containing toothpaste show better remineralization potential on demineralized enamel and dentin when compared with toothpaste containing various bioactive constituents such as fluoride and potassium chloride. These constituents in conventional toothpaste can rapidly streak off due to acidic impact in the oral environment as the bioactive glass provides minerals for demineralized enamel and dentin by forming a strong hydroxyapatite (HAp) layer on its surface. Further, the therapeutic ions present in the bioglass can resist plaque formation by raising the pH of the surrounding environment or saliva and create amicable media for healthier teeth.

Summary: Toothpaste containing bioactive glass particles undoubtedly displayed the remineralizing potentiality of the dental hard tissues. Dynamics of the mineralization through different bioactive glass materials needs further investigations. In order to prevent dental cavities and improve oral health, it is important to identify and study different effective bioglass particles in toothpaste.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062909PMC
http://dx.doi.org/10.1007/s40496-024-00366-3DOI Listing

Publication Analysis

Top Keywords

bioactive glass
20
toothpaste bioactive
12
glass particles
8
oral health
8
demineralized enamel
8
enamel dentin
8
bioactive
7
toothpaste
6
glass
5
review enhancing
4

Similar Publications

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Synthetic bone transplantation has emerged in recent years as a highly promising strategy to address the major clinical challenge of bone tissue defects. In this field, bioactive glasses (BGs) have been widely recognized as a viable alternative to traditional bone substitutes due to their unique advantages, including favorable biocompatibility, pronounced bioactivity, excellent biodegradability, and superior osseointegration properties. This article begins with a comprehensive overview of the development and success of BGs in bone tissue engineering, and then focuses on their composite reinforcement systems with biodegradable metals, calcium-phosphorus (Ca-P)-based bioceramics, and biodegradable medical polymers, respectively.

View Article and Find Full Text PDF

Bone defect repair remains a great challenge in the field of orthopedics. Human body essential trace element such as copper is essential for bone regeneration, but how to use it in bone defects and the underlying its mechanisms of promoting bone formation need to be further explored. In this study, by doping copper into mesoporous bioactive glass nanoparticles (Cu-MBGNs), we unveil a previously unidentified role of copper in facilitating osteoblast mitophagy and mitochondrial dynamics, which enhance amorphous calcium phosphate (ACP) release and subsequent biomineralization, ultimately accelerating the process of bone regeneration.

View Article and Find Full Text PDF

Bone regeneration in sheep model induced by strontium-containing mesoporous bioactive glasses.

Biomater Adv

December 2024

Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28040 Madrid, Spain. Electronic address:

Local delivery of therapeutic ions from bioactive mesoporous glasses (MBGs) is postulated as one of the most promising strategies for regenerative therapy of critical bone defects. Among these ions, Sr cation has been widely considered for this purpose as part of the composition of MBGs. MBGs of chemical composition 75SiO-25-x CaO-5PO-xSrO with x = 0, 2.

View Article and Find Full Text PDF

E-jet printed polycaprolactone with strontium-substituted mesoporous bioactive glass nanoparticles for bone tissue engineering.

Biomater Adv

January 2025

Department of Orthopaedic Surgery, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore 119228, Singapore.

Osteoporosis, characterized by reduced bone mineral density and increased fracture risk, poses a significant health challenge, particularly for aging populations. Systemic treatments often lead to adverse side effects, emphasizing the need for localized solutions. This study introduces a 3D-printed polycaprolactone (PCL) scaffold embedded with strontium-substituted mesoporous bioactive glass nanoparticles (Sr-MBGNPs) and icariin (ICN) for the targeted regeneration of osteoporotic bone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!