Evidence for a role of synchrony but not common fate in the perception of biological group movements.

Eur J Neurosci

Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.

Published: July 2024

Extensive research has shown that observers are able to efficiently extract summary information from groups of people. However, little is known about the cues that determine whether multiple people are represented as a social group or as independent individuals. Initial research on this topic has primarily focused on the role of static cues. Here, we instead investigate the role of dynamic cues. In two experiments with male and female human participants, we use EEG frequency tagging to investigate the influence of two fundamental Gestalt principles - synchrony and common fate - on the grouping of biological movements. In Experiment 1, we find that brain responses coupled to four point-light figures walking together are enhanced when they move in sync vs. out of sync, but only when they are presented upright. In contrast, we found no effect of movement direction (i.e., common fate). In Experiment 2, we rule out that synchrony takes precedence over common fate by replicating the null effect of movement direction while keeping synchrony constant. These results suggest that synchrony plays an important role in the processing of biological group movements. In contrast, the role of common fate is less clear and will require further research.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejn.16356DOI Listing

Publication Analysis

Top Keywords

common fate
20
synchrony common
8
biological group
8
group movements
8
movement direction
8
synchrony
5
common
5
fate
5
evidence role
4
role synchrony
4

Similar Publications

Genomic and phenotypic correlates of mosaic loss of chromosome Y in blood.

Am J Hum Genet

January 2025

Division of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA. Electronic address:

Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole-genome sequencing (WGS) of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program.

View Article and Find Full Text PDF

Livestock manure, a common fertilizer in Chinese agriculture, can lead to environmental contamination and potential health risks due to elevated antibiotic and phosphorus levels. Importantly, the high phosphorus levels initiates transformations of phosphate minerals in soils, especially calcareous soils. These variations in phosphate mineralogy can significantly impact the migration and fate of antibiotics within the soil.

View Article and Find Full Text PDF

Human chitinolytic enzymes trigger growing interest, not only because a wide range of diseases and allergic responses are linked to chitinous components of pathogens, including their interplay with human enzymes, but also due to the increasing use of chitosans in biomedical applications. Here, we present a detailed side-by-side analysis of the only two human chitinases, chitotriosidase and acidic mammalian chitinase, as well as human lysozyme. By analyzing the cleavage of well-characterized chitosan polymers and defined chitin and chitosan oligomers, we report mild processivity and a quantitative subsite preference typical for GH18 chitinases for chitotriosidase and acidic mammalian chitinase.

View Article and Find Full Text PDF

Engineering Gene and Protein Switches for Regulation of Lineage-Specifying Transcription Factors.

Biotechnol Bioeng

January 2025

Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.

Human pluripotent stem cells (hPSCs) can be differentiated in vitro to an increasing number of mature cell types, presenting significant promise for addressing a wide range of diseases and studying human development. One approach to further enhance stem cell differentiation methods would be to coordinate multiple inducible gene or protein switches to operate simultaneously within the same cell, with minimal cross-interference, to precisely regulate a network of lineage-specifying transcription factors (TFs) to guide cell fate decisions. Therefore, in this study, we designed and tested various mammalian gene and protein switches responsive to clinically safe small-molecule inhibitors of viral proteases.

View Article and Find Full Text PDF
Article Synopsis
  • FT596 is a novel cancer therapy using iPSC-derived CAR NK cells targeting CD19, designed to assess its safe dosage and effectiveness alone and with rituximab in patients with B-cell lymphoma.
  • This phase 1 trial involved patients with relapsed or refractory B-cell lymphoma, administering FT596 after chemotherapy, with separate regimens for those receiving rituximab and those who did not.
  • The study measured potential side effects while determining the optimal dose of FT596 and allowed modifications to the treatment based on patient tolerance and response.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!