Atherosclerotic cardiovascular disease (ASCVD) is an advanced chronic inflammatory disease and the leading cause of death worldwide. The pathological development of ASCVD begins with atherosclerosis, characterised by a pathological remodelling of the arterial wall, lipid accumulation and build-up of atheromatous plaque. As the disease advances, it narrows the vascular lumen and limits the blood, leading to ischaemic necrosis in coronary arteries. Exosomes are nano-sized lipid vesicles of different origins that can carry many bioactive molecules from their parental cells, thus playing an important role in intercellular communication. The roles of exosomes in atherosclerosis have recently been intensively studied, advancing our understanding of the underlying molecular mechanisms. In this review, we briefly introduce exosome biology and then focus on the roles of exosomes of different cellular origins in atherosclerosis development and progression, functional significance of their cargoes and physiological impact on recipient cells. Studies have demonstrated that exosomes originating from endothelial cells, vascular smooth muscle cells, macrophages, dendritic cells, platelets, stem cells, adipose tissue and other sources play an important role in the atherosclerosis development and progression by affecting cholesterol transport, inflammatory, apoptotic and other aspects of the recipient cells' metabolism. MicroRNAs are considered the most significant type of bioactive molecules transported by exosomes and involved in ASCVD development. Finally, we review the current achievements and limitations associated with the use of exosomes for the diagnosis and treatment of ASCVD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0109298673302220240430173404 | DOI Listing |
Drug Deliv Transl Res
January 2025
Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.
Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.
View Article and Find Full Text PDFMater Today Bio
February 2025
Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China.
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. As a chronic inflammatory disease with a complicated pathophysiology marked by abnormal lipid metabolism and arterial plaque formation, atherosclerosis is a major contributor to CVDs and can induce abrupt cardiac events. The discovery of exosomes' role in intercellular communication has sparked a great deal of interest in them recently.
View Article and Find Full Text PDFNarra J
December 2024
Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Chronic limb-threatening ischemia (CLTI) is the most severe manifestation of peripheral arterial disease (PAD) and imposes a significantly high burden due to its high risk of mortality and amputation. Revascularization is the first-line treatment for CLTI; however, the amputation rate remains high, and approximately one-third of patients are not eligible for this treatment. Therefore, there is an urgent need for more effective therapeutic strategies.
View Article and Find Full Text PDFDiabetol Metab Syndr
January 2025
Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
Background And Aims: Type 2 diabetes mellitus (T2DM) is usually complicated by cardiovascular diseases, hyperglycemia, and obesity, which worsen the outcome for the patient. Since recent evidence underlines the epigenetic role of glucagon-like peptide-1 receptor agonists (GLP-1RAs) in the management of these comorbidities, this study compared the effects of these agents, namely liraglutide, semaglutide, dulaglutide, and exenatide, on miRNA regulation in the management of T2DM.
Results: GLP-1RAs modify the expression of miRNAs involved in endothelial function, sugar metabolism, and adipogenesis, including but not limited to miR-27b, miR-130a, and miR-210.
Background: Vascular endothelial cell-derived exosomes are thought to mediate disease progression by regulating macrophage polarization. However, its mechanism in diabetes mellitus (DM)-related atherosclerosis (AS) progress is unclear.
Methods: High-glucose (HG) and oxLDL were used to induce human cardiac microvascular endothelial cells (HCMECs) to mimic DM-related AS model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!