Increasingly complex modern gas-monitoring scenarios necessitate advanced sensing capabilities to detect and identify a diverse range of gases under varying conditions. There is a rising demand for individual sensors with multiple responses capable of recognizing gases, identifying components in mixtures, and providing stable responses. Inspired by gas sensors employing multivariable response principles, we develop a nanoporous anodic alumina high-order microcavity (NAA-HOμCV) gas sensor with multiple optical outputs for discriminative gas detection. The NAA-HOμCV architecture, formed by a Fabry-Pérot microcavity with distributed Bragg reflector (DBR) mirrors and an extended-length microcavity layer supporting multiple resonant modes, serves as an effective solid-state fingerprint platform for distinguishing volatile organic compound (VOC) gases. Our research reveals that the coupling strength of light into resonant modes and their evolution depend on the thickness of the DBR mirrors and the dimension of the microcavity layer, which allows us to optimize the discriminative sensing capability of the NAA-HOμCV sensor through structural engineering of the microcavity and photonic crystal mirrors. Gas-sensing experiments conducted on the NAA-HOμCV sensor demonstrate real-time discrimination between physiosorbed VOC gases (isopropanol, ethanol, or acetone) in reversible gas sensing. It also achieves superior ppb-level sensing in irreversible gas sensing of model silane molecules. Our study presents promising avenues for designing compact, cost-effective, and highly efficient gas sensors with tailored properties for discriminative gas detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c03804 | DOI Listing |
Water Res X
May 2025
School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.
View Article and Find Full Text PDFDalton Trans
January 2025
Univ. Bourgogne Europe, CNRS, ICMUB (UMR 6302) Institut de Chimie Moléculaire de l'Université de Bourgogne, 9, Avenue Alain Savary, 21 000 Dijon, France.
We report herein the synthesis and full spectroscopic characterization of two AB-corrole phosphonic acids. Thanks to the presence of a phosphonic acid functional group at the 10--position, the corroles were covalently linked to the hexanuclear Zr clusters of a PCN-222 metal-organic framework (MOF). After the insertion of cobalt into the corrole macrocycle, the metal complexes are able to bind small volatile molecules such as carbon monoxide (CO).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Laboratory of Coordination and Analytical Chemistry (LCCA), Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, Ben Maachou Road, B.P: 20, 24000, El Jadida, Morocco.
This work is focused on the synthesis and performance of Ni(PO)-based catalysts doped with Cu, Co, Mn, Ce, Zr, and Mg for the complete oxidation of ethanol, aiming at reducing emissions from ethanol-blended gasoline. Nickel phosphate was prepared via the co-precipitation method, followed by impregnation with the specified dopants. The catalysts were thoroughly characterized by XRD, N-physisorption, XRF, FTIR and Raman spectroscopy, FESEM, NH-TPD, CO-TPD, and H-TPR to explain their performance.
View Article and Find Full Text PDFJ Occup Environ Hyg
January 2025
Center for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, Cincinnati, Ohio.
Chemical release data are essential for performing chemical risk assessments to understand the potential exposures arising from industrial processes. Often, these data are unknown or unavailable and must be estimated. A case study of volatile organic compound releases during extrusion-based additive manufacturing is used here to explore the viability of various regression methods for predicting chemical releases to inform chemical assessments.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Postharvest, Supply Chain, Commerce and Sensory Science, Institute of Food Science and Technology Hungarian University of Agriculture and Life Sciences Budapest Hungary.
The volatile profile of bee pollen samples from Central and Eastern Europe was investigated by headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Sampling conditions were optimized for the extraction of volatiles. Pollen odorants were extracted with six different fiber coatings, five various extraction times, three diverse extraction temperatures and three differing desorption times.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!