Background: Sleep-disordered breathing (SDB) affects a significant portion of the population. As such, there is a need for accessible and affordable assessment methods for diagnosis but also case-finding and long-term follow-up. Research has focused on exploiting cardiac and respiratory signals to extract proxy measures for sleep combined with SDB event detection. We introduce a novel multi-task model combining cardiac activity and respiratory effort to perform sleep-wake classification and SDB event detection in order to automatically estimate the apnea-hypopnea index (AHI) as severity indicator.
Methods: The proposed multi-task model utilized both convolutional and recurrent neural networks and was formed by a shared part for common feature extraction, a task-specific part for sleep-wake classification, and a task-specific part for SDB event detection. The model was trained with RR intervals derived from electrocardiogram and respiratory effort signals. To assess performance, overnight polysomnography (PSG) recordings from 198 patients with varying degree of SDB were included, with manually annotated sleep stages and SDB events.
Results: We achieved a Cohen's kappa of 0.70 in the sleep-wake classification task, corresponding to a Spearman's correlation coefficient (R) of 0.830 between the estimated total sleep time (TST) and the TST obtained from PSG-based sleep scoring. Combining the sleep-wake classification and SDB detection results of the multi-task model, we obtained an R of 0.891 between the estimated and the reference AHI. For severity classification of SBD groups based on AHI, a Cohen's kappa of 0.58 was achieved. The multi-task model performed better than a single-task model proposed in a previous study for AHI estimation, in particular for patients with a lower sleep efficiency (R of 0.861 with the multi-task model and R of 0.746 with single-task model with subjects having sleep efficiency < 60%).
Conclusion: Assisted with automatic sleep-wake classification, our multi-task model demonstrated proficiency in estimating AHI and assessing SDB severity based on AHI in a fully automatic manner using RR intervals and respiratory effort. This shows the potential for improving SDB screening with unobtrusive sensors also for subjects with low sleep efficiency without adding additional sensors for sleep-wake detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11070105 | PMC |
http://dx.doi.org/10.1186/s12938-024-01240-0 | DOI Listing |
Radiother Oncol
December 2024
Department of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China. Electronic address:
Background And Purpose: Accurate segmentation of the clinical target volume (CTV) is essential to deliver an effective radiation dose to tumor tissues in cervical cancer radiotherapy. Also, although automated CTV segmentation can reduce oncologists' workload, challenges persist due to the microscopic spread of tumor cells undetectable in CT imaging, low-intensity contrast between organs, and inter-observer variability. This study aims to develop and validate a multi-task feature fusion network (MTF-Net) that uses distance-based information to enhance CTV segmentation accuracy.
View Article and Find Full Text PDFNeural Netw
December 2024
School of Computer Science, Wuhan University, Luojiashan Road, Wuchang District., Wuhan, 430072, Hubei Province, China; Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, No. 8, Yangqiaohu Avenue, Zanglong Island Development Zone, Jiangxia District, Wuhan, 2007, Hubei Province, China. Electronic address:
The remarkable success of Graph Neural Networks underscores their formidable capacity to assimilate multimodal inputs, markedly enhancing performance across a broad spectrum of domains. In the context of molecular modeling, considerable efforts have been made to enrich molecular representations by integrating data from diverse aspects. Nevertheless, current methodologies frequently compartmentalize geometric and semantic components, resulting in a fragmented approach that impairs the holistic integration of molecular attributes.
View Article and Find Full Text PDFJ Am Med Inform Assoc
December 2024
AI for Health Institute, Washington University in St Louis, St Louis, MO 63130, United States.
Objective: Early detection of surgical complications allows for timely therapy and proactive risk mitigation. Machine learning (ML) can be leveraged to identify and predict patient risks for postoperative complications. We developed and validated the effectiveness of predicting postoperative complications using a novel surgical Variational Autoencoder (surgVAE) that uncovers intrinsic patterns via cross-task and cross-cohort presentation learning.
View Article and Find Full Text PDFNat Comput Sci
December 2024
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Machine learning plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules; however, most existing machine learning models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work we developed a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data. Tested on hydrocarbon molecules, our model outperforms DFT with several widely used hybrid and double-hybrid functionals in terms of both computational cost and prediction accuracy of various quantum chemical properties.
View Article and Find Full Text PDFProc (IEEE Int Conf Healthc Inform)
June 2024
College of Medicine, University of Florida, Gainesville, FL, USA.
Multivariate clinical time series data, such as those contained in Electronic Health Records (EHR), often exhibit high levels of irregularity, notably, many missing values and varying time intervals. Existing methods usually construct deep neural network architectures that combine recurrent neural networks and time decay mechanisms to model variable correlations, impute missing values, and capture the impact of varying time intervals. The complete data matrices thus obtained from the imputation task are used for downstream risk prediction tasks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!