Download full-text PDF |
Source |
---|
Front Artif Intell
January 2025
Faculty of Natural and Applied Sciences, Department of Computer Science and Information Technology, Sol Plaatje University, Kimberley, South Africa.
The rapid adoption and evolving nature of artificial intelligence (AI) is playing a significant role in shaping the music streaming industry. AI has become a key player in transforming the digital music streaming industry, particularly in enhancing user experiences and driving subscription growth. Through AI automation, platforms personalize music recommendations, optimize subscription offerings, and improve customer support services.
View Article and Find Full Text PDFNat Ecol Evol
January 2025
Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA, USA.
The emergence of generative artificial intelligence (AI) models specializing in the generation of new data with the statistical patterns and properties of the data upon which the models were trained has profoundly influenced a range of academic disciplines, industry and public discourse. Combined with the vast amounts of diverse data now available to ecologists, from genetic sequences to remotely sensed animal tracks, generative AI presents enormous potential applications within ecology. Here we draw upon a range of fields to discuss unique potential applications in which generative AI could accelerate the field of ecology, including augmenting data-scarce datasets, extending observations of ecological patterns and increasing the accessibility of ecological data.
View Article and Find Full Text PDFNat Commun
January 2025
ZJU-UIUC Institute, Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou, China.
The bidirectional interactions between metamaterials and artificial intelligence have recently attracted immense interest to motivate scientists to revisit respective communities, giving rise to the proliferation of intelligent metamaterials and metamaterials intelligence. Owning to the strong nonlinear fitting and generalization ability, artificial intelligence is poised to serve as a materials-savvy surrogate electromagnetic simulator and a high-speed computing nucleus that drives numerous self-driving metamaterial applications, such as invisibility cloak, imaging, detection, and wireless communication. In turn, metamaterials create a versatile electromagnetic manipulator for wave-based analogue computing to be complementary with conventional electronic computing.
View Article and Find Full Text PDFAnal Chim Acta
March 2025
Artificial Intelligence Research Center, Chang Gung University, Taoyuan, 333323, Taiwan; Department of Artificial Intelligence, College of Intelligent Computing, Chang Gung University, Taoyuan, 333323, Taiwan. Electronic address:
Background: In recent years, employing deep learning methods in the biosensing area has significantly reduced data analysis time and enhanced data interpretation and prediction accuracy. In some SPR fields, research teams have further enhanced detection capabilities using deep learning techniques. However, the application of deep learning to spectroscopic surface plasmon resonance (SPR) biosensors has not been reported.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2025
Binghamton Center of Complex Systems, Binghamton University, State University of New York, Binghamton, NY 13902, USA.
Artificial swarm systems have been extensively studied and used in computer science, robotics, engineering and other technological fields, primarily as a platform for implementing robust distributed systems to achieve pre-defined objectives. However, such swarm systems, especially heterogeneous ones, can also be utilized as an ideal platform for creating open-ended evolutionary dynamics that do not converge toward pre-defined goals but keep exploring diverse possibilities and generating novel outputs indefinitely. In this article, we review Swarm Chemistry and its variants as concrete sample cases to illustrate beneficial characteristics of heterogeneous swarm systems, including the cardinality leap of design spaces, multi-scale structures/behaviours and their diversity, and robust self-organization, self-repair and ecological interactions of emergent patterns, all of which serve as the driving forces for open-ended evolutionary processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!