The developed asymmetric monovalent bispecific IgG1 or Duet monoclonal antibody (Duet mAb) has two distinct fragment antigen-binding region (Fab) subunits that target two different epitope specificities sequentially or simultaneously. The design features include unique engineered disulfide bridges, knob-into-hole mutations, and kappa and lambda chains to produce Duet mAbs. These make it structurally and functionally complex, so one expects challenging developability linked to instability, degradation of products and pathways, and limited reports available. Here, we have treated the product with different sources of extreme stress over a lengthy period, including varying heat, pH, photo stress, chemical oxidative stress, accelerated stress in physiological conditions, and forced glycation conditions. The effects of different stress conditions on the product were assessed using various analytical characterization tools to measure product-related substances, post-translational modifications (PTMs), structural integrity, higher-order disulfide linkages, and biological activity. The results revealed degradation products and pathways of Duet mAb. A moderate increase in size, charge, and hydrophobic variants, PTMs, including deamidation, oxidation, isomerization, and glycation were observed, with most conditions exhibiting biological activity. In addition, the characterization of fractionated charge variants, including deamidated species, showed satisfactory biological activity. This study demonstrated the prominent stability of the Duet mAb format comparable to most marketed mAbs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2024.04.029DOI Listing

Publication Analysis

Top Keywords

duet mab
12
biological activity
12
prominent stability
8
asymmetric monovalent
8
monovalent bispecific
8
bispecific igg1
8
monoclonal antibody
8
degradation products
8
products pathways
8
duet
5

Similar Publications

The developed asymmetric monovalent bispecific IgG1 or Duet monoclonal antibody (Duet mAb) has two distinct fragment antigen-binding region (Fab) subunits that target two different epitope specificities sequentially or simultaneously. The design features include unique engineered disulfide bridges, knob-into-hole mutations, and kappa and lambda chains to produce Duet mAbs. These make it structurally and functionally complex, so one expects challenging developability linked to instability, degradation of products and pathways, and limited reports available.

View Article and Find Full Text PDF

Developing a knob-into-hole asymmetric bispecific IgG1 monoclonal antibody (mAb) poses manufacturing challenges due to the expression of chain pairing variants, also called mispaired species, in the desired product. The incorrect pairing of light and heavy chains could result in heterogeneous mispaired species of homodimers, heterodimers, light chain swapping, and low molecular weight species (LMWS). Standard chromatography, capillary electrophoretic, or spectroscopic methods poorly resolve these from the main variants.

View Article and Find Full Text PDF

When expressing complex biotherapeutic proteins, traditional expression plasmids and methods may not always yield sufficient levels of high-quality product. High-strength viral promoters commonly used for recombinant protein (rProtein) production in mammalian cells allow for maximal expression, but provide limited scope to alter their transcription dynamics. However, synthetic promoters designed to provide tunable transcriptional activity offer a plasmid engineering approach to more precisely regulate product quality, yield or to reduce product related contaminants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!