Ethnopharmacological Relevance: Cardiovascular and cerebrovascular diseases are the leading causes of death worldwide and interact closely with each other. Danhong Injection (DHI) is a widely used preparation for the co-treatment of brain and heart diseases (CTBH). However, the underlying molecular endotype mechanisms of DHI in the CTBH remain unclear.

Aim Of This Study: To elucidate the underlying endotype mechanisms of DHI in the CTBH.

Materials And Methods: In this study, we proposed a modular-based disease and drug-integrated analysis (MDDIA) strategy for elucidating the systematic CTBH mechanisms of DHI using high-throughput transcriptome-wide sequencing datasets of DHI in the treatment of patients with stable angina pectoris (SAP) and cerebral infarction (CI). First, we identified drug-targeted modules of DHI and disease modules of SAP and CI based on the gene co-expression networks of DHI therapy and the protein-protein interaction networks of diseases. Moreover, module proximity-based topological analyses were applied to screen CTBH co-module pairs and driver genes of DHI. At the same time, the representative driver genes were validated via in vitro experiments on hypoxia/reoxygenation-related cardiomyocytes and neuronal cell lines of H9C2 and HT22.

Results: Seven drug-targeted modules of DHI and three disease modules of SAP and CI were identified by co-expression networks. Five modes of modular relationships between the drug and disease modules were distinguished by module proximity-based topological analyses. Moreover, 13 targeted module pairs and 17 driver genes associated with DHI in the CTBH were also screened. Finally, the representative driver genes AKT1, EDN1, and RHO were validated by in vitro experiments.

Conclusions: This study, based on clinical sequencing data and modular topological analyses, integrated diseases and drug targets. The CTBH mechanism of DHI may involve the altered expression of certain driver genes (SRC, STAT3, EDN1, CYP1A1, RHO, RELA) through various enriched pathways, including the Wnt signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2024.118287DOI Listing

Publication Analysis

Top Keywords

driver genes
20
mechanisms dhi
12
disease modules
12
topological analyses
12
dhi
11
danhong injection
8
cardiovascular cerebrovascular
8
cerebrovascular diseases
8
drug disease
8
endotype mechanisms
8

Similar Publications

The lower urinary tract is comprised of the bladder and urethra and develops from the cloaca, a transient endoderm-derived structure formed from the caudal hindgut. After cloacal septation to form the urogenital sinus and anorectal tract, the bladder gradually develops from the anterior portion of urogenital sinus while the urethra elongates distally into the genital tubercle. The bladder is a target for regenerative and reconstructive therapies but engineering an impermeable bladder epithelial lining has proven challenging.

View Article and Find Full Text PDF

This study analyzed targeted sequencing data from 6530 tissue samples from patients with metastatic Chinese colorectal cancer (CRC) to identify low mutation frequency and subgroup-specific driver genes, using three algorithms for overall CRC as well as across different clinicopathological subgroups. We analyzed 425 cancer-related genes, identifying 101 potential driver genes, including 36 novel to CRC. Notably, some genes demonstrated subgroup specificity; for instance, ERBB4 was found as a male-specific driver gene and mutations of ERBB4 only influenced the prognosis of male patients with CRC.

View Article and Find Full Text PDF

: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM.

View Article and Find Full Text PDF

: With the rise in prevalence of diagnostic genetic techniques like RNA sequencing and whole exome sequencing (WES), as well as biological treatment regiments for cancer therapy, several genes have been implicated in carcinogenesis. This review aims to update our understanding of the Neurofibromatosis 2 (NF2) gene and its role in the pathogenesis of various cancers. : A comprehensive search of five online databases yielded 43 studies that highlighted the effect of sporadic NF2 mutations on several cancers, including sporadic meningioma, ependymoma, schwannoma, mesothelioma, breast cancer, hepatocellular carcinoma, prostate cancer, glioblastoma, thyroid cancer, and melanoma.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!