Ecotoxicology studies were performed in the earthworm Eisenia fetida with four different synthetic amorphous silica (SAS) (SYLOID® AL-1 FP, SYLOID® MX 107, LUDOX® P T-40 F, and HDK® N20) mixed into artificial soil to determine a NOEC/LOEC for effects on reproduction (56 days after application), mortality and biomass development (28 days after application) using a standardized artificial soil with 10% peat. The LC50 for test-item effects on adult mortality, and an EC10 and EC50 for reproduction were also determined. Furthermore, earthworms underwent histopathology evaluation, and the amount of silica in different organs from these organisms was evaluated using EDX (Energy Dispersive X-ray Spectroscopy). Histopathology revealed no findings in any organ of the earthworms, except for desiccated dissepiments in evaluated decedents at extremely high SAS doses. To measure SAS uptake into the organs, a fully quantitative method for silica was established and validated using standards containing known concentrations of silica to ensure the accuracy of the analyses undertaken. Results from EDX analysis demonstrated the negligible presence of silicon within the brain ganglia and gonads of adult earthworms comparable to controls. Therefore, any deposition of the test items within these two organs was excluded. In contrast, traces of silicon higher than in controls were found in the intestinal lumina of the earthworms due to ingestion of SAS with soil and feed, but not in other organs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2024.04.011 | DOI Listing |
Molecules
January 2025
Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 760001, Colombia.
Scaffolds for regenerative therapy can be made from natural or synthetic polymers, each offering distinct benefits. Natural biopolymers like chitosan (CS) are biocompatible and biodegradable, supporting cell interactions, but lack mechanical strength. Synthetic polymers like polyvinyl alcohol (PVA) provide superior mechanical strength and cost efficiency but are not biodegradable or supportive of cell adhesion.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Sector 3, New Delhi, 110017, India.
The repercussions of hormone replacement therapy (HRT) and bisphosphonates pose serious clinical challenges and warrant novel therapies for osteoporosis in menopausal women. To confront this issue, the present research aimed to design and fabricate daidzein (DZ); a phytoestrogen-loaded hydroxyapatite nanoparticles to mimic and compensate for synthetic estrogens and biomineralization. Hypothesizing this bimodal approach, hydroxyapatite nanoparticles (HAPNPs) were synthesized using the chemical-precipitation method followed by drug loading (DZHAPNPs) via sorption.
View Article and Find Full Text PDFHydrothermal carbonization (HTC) of carbohydrates has been reported as a sustainable and green technique to produce carbonaceous micro- and nano-materials. These materials have been developed for several applications, including catalysis, separation science, metal ion adsorption and nanomedicine. Carbon nanoparticles (CNPs) obtained through HTC are particularly interesting for the latter application since they exhibit photothermal properties when irradiated with near-infrared (NIR) light, act as an antioxidant by scavenging reactive oxygen species (ROS), and present good colloidal stability and biocompatibility.
View Article and Find Full Text PDFInorg Chem
January 2025
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
Using ab initio based molecular dynamics and electronic structure calculations, we show that Zn impurities in hydrated amorphous calcium carbonate (ACC) have a much lower coordination number than other divalent impurities due to covalent interactions between the 3d Zn shell and the oxygen atoms of the carbonate and water groups. The local structure around Zn in ACC, including the predicted low coordination number, is confirmed by X-ray absorption spectroscopy of synthetic Zn-bearing ACC. The strong Zn-O chemical interaction leads to substantial water dissociation and slightly disrupts the hydrogen bonding network.
View Article and Find Full Text PDFMacromolecules
January 2025
Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
The environmental and economic challenges posed by the widespread use and disposal of plastics, particularly poly(ethylene terephthalate) (PET), require innovative solutions to mitigate their impact. Such mitigation begins with understanding physical properties of the polymer that could enable new recycling technologies. Although molecular simulations have provided valuable insights into PET interactions with various PET hydrolases, current nonpolarizable force fields neglect the electronic polarization effects inherent to PET interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!