Subcellular metal distribution assessments are the most adequate biomonitoring approach to evaluate metal toxicity, instead of total metal assessments This study aimed to assess subcellular metal distributions and associations to the main metal exposure biomarker, metallothionein (MT), in two bromeliad species (Tillandsia usneoides and Tillandsia stricta) exposed established in industrial, urban, and port areas in the metropolitan region of Rio de Janeiro, southeastern Brazil, through an active biomonitoring approach conducted one year. Metals and metalloids in three subcellular fractions (insoluble, thermolabile and thermostable) obtained from the MT purification process were determined by inductively coupled plasma mass spectrometry (ICP-MS). Lower MT concentrations were observed both during the dry sampling periods, associated to the crassulacean acid metabolism (CAM) and during the COVID-19 pandemic, due to reduced urban mobility, decreasing pollutant emissions. The percentage of non-bioavailable metals detected in the insoluble fraction increased throughout the sampling period for both species. Several metals (Cr, Co, Cu, Cd, Mn, Ni, Se, and Zn), most associated with vehicle emissions, the main pollutant source in urban centers, were detected in the thermostable fraction and are, thus, associated with MT through the MT-metal detoxification route. Insoluble metal concentrations were higher in T. stricta, indicating that this species seems less susceptible to cellular metal exposure damage. A potential protective effect of Se and Fe was detected against Pb, suggested by a strong negative correlation, which may be attributed to antioxidant roles and similar uptake routes, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.116421DOI Listing

Publication Analysis

Top Keywords

subcellular metal
8
biomonitoring approach
8
metal exposure
8
metal
7
ecotoxicological assessments
4
assessments atmospheric
4
atmospheric biomonitors
4
biomonitors exposed
4
urban
4
exposed urban
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!