Orienting role of the putative human posterior infero-temporal area in visual attention.

Cortex

Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China. Electronic address:

Published: June 2024

The dorsal attention network (DAN) is a network of brain regions essential for attentional orienting, which includes the lateral intraparietal area (LIP) and frontal eye field (FEF). Recently, the putative human dorsal posterior infero-temporal area (phPITd) has been identified as a new node of the DAN. However, its functional relationship with other areas of the DAN and its specific role in visual attention remained unclear. In this study, we analyzed a large publicly available neuroimaging dataset to investigate the intrinsic functional connectivities (FCs) of the phPITd with other brain areas. The results showed that the intrinsic FCs of the phPITd with the areas of the visual network and the DAN were significantly stronger than those with the ventral attention network (VAN) areas and areas of other networks. We further conducted individual difference analyses with a sample size of 295 participants and a series of attentional tasks to investigate which attentional components each phPITd-based DAN edge predicts. Our findings revealed that the intrinsic FC of the left phPITd with the LIPv could predict individual ability in attentional orienting, but not in alerting, executive control, and distractor suppression. Our results not only provide direct evidence of the phPITd's functional relationship with the LIPv, but also offer a comprehensive understanding of its specific role in visual attention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cortex.2024.04.006DOI Listing

Publication Analysis

Top Keywords

visual attention
12
putative human
8
posterior infero-temporal
8
infero-temporal area
8
attention network
8
network dan
8
attentional orienting
8
functional relationship
8
specific role
8
role visual
8

Similar Publications

Background: With increased for promoting neuroplasticity in older adults through Cognitive training (CT), the study aimed to develop culturally relevant caregiver-driven model of CT for dementia called the Individualized Cognitive Augmentation Regimen for Elderly (iCARE).

Method: The study has three phases- 1. Development Phase- Included a) literature review, b) item generation, c) expert rating, d) field trial (n = 3), and e) feedback and modification.

View Article and Find Full Text PDF

Background: Effect of dynamic lighting on sleep were studied since 1980's. Traditional light sources were used due to lack of advancement in technology and also researchers assumed illuminance as cause of melatonin suppression. This led researchers to use high illuminance to suppress melatonin at day time.

View Article and Find Full Text PDF

Technology and Dementia Preconference.

Alzheimers Dement

December 2024

Yuan Ze University, Taoyuan CIty, Taoyuan, Taiwan.

Background: Effect of dynamic lighting on sleep were studied since 1980's. Traditional light sources were used due to lack of advancement in technology and also researchers assumed illuminance as cause of melatonin suppression. This led researchers to use high illuminance to suppress melatonin at day time.

View Article and Find Full Text PDF

stana: an R package for metagenotyping analysis and interactive application based on clinical data.

NAR Genom Bioinform

March 2025

Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.

Metagenotyping of metagenomic data has recently attracted increasing attention as it resolves intraspecies diversity by identifying single nucleotide variants. Furthermore, gene copy number analysis within species provides a deeper understanding of metabolic functions in microbial communities. However, a platform for examining metagenotyping results based on relevant grouping data is lacking.

View Article and Find Full Text PDF

Many animals are capable of rapid dynamic colour change, which is particularly well represented in fishes. The proximate mechanisms of dynamic colour change in fishes are well understood; however, less attention has been given to understanding its ecological relevance. In this study, we investigate dynamic colour change in zebrafish () across multiple contexts, using a protocol to image the colouration of live fish without anaesthesia under standardized conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!