The disruption of the SWL1 gene leads to a significant down regulation of chloroplast and secondary metabolites gene expression in Arabidopsis thaliana. And finally results in a dysfunction of chloroplast and plant growth. Although the development of the chloroplast has been a consistent focus of research, the corresponding regulatory mechanisms remain unidentified. In this study, the CRISPR/Cas9 system was used to mutate the SWL1 gene, resulting in albino cotyledons and variegated true leaf phenotype. Confocal microscopy and western blot of chloroplast protein fractions revealed that SWL1 localized in the chloroplast stroma. Electron microscopy indicated chloroplasts in the cotyledons of swl1 lack well-defined grana and internal membrane structures, and similar structures have been detected in the albino region of variegated true leaves. Transcriptome analysis revealed that down regulation of chloroplast and nuclear gene expression related to chloroplast, including light harvesting complexes, porphyrin, chlorophyll metabolism and carbon metabolism in the swl1 compared to wild-type plant. In addition, proteomic analysis combined with western blot analysis, showed that a significant decrease in chloroplast proteins of swl1. Furthermore, the expression of genes associated with secondary metabolites and growth hormones was also reduced, which may be attributed to SWL1 associated with absorption and fixation of inorganic carbon during chloroplast development. Together, the above findings provide valuable information to elucidate the exact function of SWL1 in chloroplast biogenesis and development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-024-03210-1DOI Listing

Publication Analysis

Top Keywords

chloroplast
11
swl1
9
swl1 chloroplast
8
chloroplast biogenesis
8
biogenesis development
8
arabidopsis thaliana
8
swl1 gene
8
regulation chloroplast
8
secondary metabolites
8
gene expression
8

Similar Publications

Cellular calcium homeostasis and regulation of its dynamic perturbation.

Quant Plant Biol

February 2025

Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK.

Calcium ions (Ca) play pivotal roles in a host of cellular signalling processes. The requirement to maintain resting cytosolic Ca levels in the 100-200 nM range provides a baseline for dynamic excursions from resting levels that determine the nature of many physiological responses to external stimuli and developmental processes. This review provides an overview of the key components of the Ca homeostatic machinery, including known channel-mediated Ca entry pathways along with transporters that act to shape the cytosolic Ca signature.

View Article and Find Full Text PDF

Characterization of fatty acid desaturase gene family in and their expression patterns in seeds after infection.

Front Plant Sci

February 2025

College of Agronomy and Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, Sichuan, China.

Background: The family of membrane-bound fatty acid desaturase () genes play a vital role in plant growth, development, and stress responses. The seed-borne pathogen causes seed decay disease during pre-harvest and post-harvest stages of soybean, leading to a significant reduction in yield and quality. Therefore, it is very meaningful to characterize the diversity and function of the gene family in soybean and to elucidate their roles in seed resistance to

Results: In this study, 30 full-length genes were identified from the soybean genome.

View Article and Find Full Text PDF

Seasonal and Diurnal Transcriptome Atlas in Natural Environment Reveals Flowering Time Regulatory Network in Alfalfa.

Plant Cell Environ

March 2025

State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing, China.

Alfalfa (Medicago sativa L.) is a globally cultivated perennial forage legume. Flowering time, an important agronomic trait of alfalfa, is pivotal for farmers to determine the optimal harvest stage, thereby maximizing economic benefits.

View Article and Find Full Text PDF

OsPRDA1 Interacts With OsFSD2 To Promote Chloroplast Development by Regulating Chloroplast Gene Expression in Rice.

Rice (N Y)

March 2025

Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China.

Chloroplasts are vital for photosynthesis, and their development necessitates proper expression of chloroplast genes. However, the regulatory mechanisms underlying rice chloroplast gene expression have not been fully elucidated. In this study, we obtained an albino mutant of rice, white seedling and lethal 1 (wsl1), which displays significantly decreased chlorophyll contents and impaired chloroplast ultrastructure.

View Article and Find Full Text PDF

Efficient Photothermoelectric Conversion of CSS@BP/BiTe Array for Innovative Aircraft Attitude Recognition.

Adv Sci (Weinh)

March 2025

MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions & Shaanxi Provincial Key Laboratory of Condensed Matter Structure and Properties, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

The realization of fast, simple and efficient flight attitude recognition is crucial for flight safety and control stability, but still faces challenges in new materials and technologies. Herein, a chloroplast-like selenium-doped copper sulfide@black phosphorus (CSS@BP) composite material is prepared by ultrasonic chemical synthesis using BP nanosheets to effectively absorb light energy and disperse CSS layers to promote rapid photothermal conversion, which shows the temperature change more than ≈40 °C and an excellent photothermal conversion efficiency of 68.9% at 405 nm, corresponding to the theoretical calculation results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!