Multidrug-resistant (MDR) pathogens are a rising global health worry that imposes an urgent need for the discovery of novel antibiotics particularly those of natural origin. In this context, we aimed to use the metagenomic nanopore sequence analysis of soil microbiota coupled with the conventional phenotypic screening and genomic analysis for identifying the antimicrobial metabolites produced by promising soil isolate(s). In this study, whole metagenome analysis of the soil sample(s) was performed using MinION™ (Oxford Nanopore Technologies). Aligning and analysis of sequences for probable secondary metabolite gene clusters were extracted and analyzed using the antiSMASH version 2 and DeepBGC. Results of the metagenomic analysis showed the most abundant taxa were Bifidobacterium, Burkholderia, and Nocardiaceae (99.21%, followed by Sphingomonadaceae (82.03%) and B. haynesii (34%). Phenotypic screening of the respective soil samples has resulted in a promising Bacillus isolate that exhibited broad-spectrum antibacterial activities against various MDR pathogens. It was identified using microscopical, cultural, and molecular methods as Bacillus (B.) haynesii isolate MZ922052. The secondary metabolite gene analysis revealed the conservation of seven biosynthetic gene clusters of antibacterial metabolites namely, siderophore lichenicidin VK21-A1/A2 (95% identity), lichenysin (100%), fengycin (53%), terpenes (100%), bacteriocin (100%), Lasso peptide (95%) and bacillibactin (53%). In conclusion, metagenomic nanopore sequence analysis of soil samples coupled with conventional screening helped identify B. haynesii isolate MZ922052 harboring seven biosynthetic gene clusters of promising antimicrobial metabolites. This is the first report for identifying the bacteriocin, lichenysin, and fengycin biosynthetic gene clusters in B. haynesii MZ922052.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11069495PMC
http://dx.doi.org/10.1186/s13568-024-01701-8DOI Listing

Publication Analysis

Top Keywords

gene clusters
16
metagenomic nanopore
12
antimicrobial metabolites
12
analysis soil
12
soil samples
12
biosynthetic gene
12
bacillus haynesii
8
mdr pathogens
8
nanopore sequence
8
sequence analysis
8

Similar Publications

Rhabdomyosarcoma (RMS) is a family of phenotypically myogenic paediatric cancers consisting of two major subtypes: fusion-positive (FP) RMS, most commonly involving the PAX3::FOXO1 fusion gene, formed by the fusion of paired box 3 (PAX3) and forkhead box O1 (FOXO1) genes, and fusion-negative (FN) RMS, lacking these gene fusions. In humans, DNA methylation patterns distinguish these two subtypes as well as mutation-associated subsets within these subtypes. To investigate the biological factors responsible for these methylation differences, we profiled DNA methylation in RMS tumours derived from genetically engineered mouse models (GEMMs) in which various driver mutations were introduced into different myogenic lineages.

View Article and Find Full Text PDF

Background: Distinctive heterogeneity characterizes diffuse large B-cell lymphoma (DLBCL), one of the most frequent types of non-Hodgkin's lymphoma. Mitochondria have been demonstrated to be closely involved in tumorigenesis and progression, particularly in DLBCL.

Objective: The purposes of this study were to identify the prognostic mitochondria-related genes (MRGs) in DLBCL, and to develop a risk model based on MRGs and machine learning algorithms.

View Article and Find Full Text PDF

Draft genome dataset of strain R-35 isolated from tidal pool sediments.

Data Brief

February 2025

Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville, Cape Town, 7530, South Africa.

The marine isolate, strain R-35, was isolated from marine sediments collected from the Glencairn Tidal Pool, Table Mountain National Park, Cape Town, South Africa. The genomic DNA was sequenced using the Ion Torrent GeneStudio™ S5 platform, and the assembly was performed using the SPAdes assembler on the Centre for High Performance Computing (CHPC) Lengau Cluster located at the CSIR, Rosebank, South Africa. The draft genome assembly consisted of 722 contigs totaling 7,625,174 base pairs and a G+C% content of 72.

View Article and Find Full Text PDF

Friedreich ataxia (FRDA) is a slowly progressive neurological disease resulting from decreased levels of the protein frataxin, a small mitochondrial protein that facilitates the synthesis of iron-sulfur clusters in the mitochondrion. It is caused by GAA (guanine-adenine-adenine) repeat expansions in the gene in 96% of patients, with 4% of patients carrying other mutations (missense, nonsense, deletion) in the gene. Compound heterozygote patients with one expanded GAA allele and a non-GAA repeat mutation can have subtle differences in phenotype from typical FRDA, including, in patients with selected missense mutations, both more severe features and less severe features in the same patient.

View Article and Find Full Text PDF

Differences in immune cells and gene expression in human milk by parity on integrated scRNA sequencing.

Clin Exp Pediatr

January 2025

Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT, United States.

Background: Human breast milk (HBM) is an important source of tolerogenic immune mediators that influence the infant immune system. HBM-derived immune components are affected by various factors; however, few studies have examined the relationship between parity and immune cell profiles of HBM.

Purpose: This study aimed to clarify the effects of parity on HBM immune cell heterogeneity and gene expression by integrating and analyzing publicly available single-cell RNA sequencing datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!