Boar semen storage at 5 °C for the reduction of antibiotic use in pig insemination: Pathways from science into practice.

Anim Reprod Sci

Unit for Reproductive Medicine/Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Bünteweg 15, Hannover D-30559, Germany.

Published: October 2024

Storage of boar semen at 5 °C instead of the conventional temperature of 17 °C is an innovative preservation concept. It enhances protection against the growth of bacteria normally occurring in the ejaculates and potential drug-resistant contaminants from the environment. Thereby it allows the reduction or even elimination of antibiotics in porcine semen extenders. The present article reviews the current state of the low-temperature preservation approach of boar semen, with a special focus on antimicrobial efficiency and fertility in field insemination trials. Particularly the role of semen extenders and temperature management for the achievement of high fertility and biosecurity are elucidated. Insemination data of 1,841 sows in there different countries revealed equally high farrowing rates and litter sizes of semen stored at 5 °C compared to the controls stored at 17 °C. Microbiology data obtained from semen doses spiked with multi-drug resistant bacteria showed the efficiency of the cold semen storage for inhibiting the growth of Serratia marcescens, a bacterial species with high sperm-toxicity. Evolving concepts on the physiological role of the male reproductive microbiome for female fertility provides a further argument against the complete eradication of bacteria in the semen dose by antibiotic additives to the extenders. Finally, motivation and practical considerations for the use of the novel preservation tool in artificial insemination of pigs are revealed, which might encourage the transformation towards a sustainable production of boar semen doses following the One Health approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anireprosci.2024.107486DOI Listing

Publication Analysis

Top Keywords

boar semen
16
semen
9
semen storage
8
semen extenders
8
stored °c
8
semen doses
8
°c
5
boar
4
storage °c
4
°c reduction
4

Similar Publications

Screening for transcriptomic associations with Swine Inflammation and Necrosis Syndrome.

BMC Vet Res

January 2025

Department of Veterinary Clinical Sciences, Clinic for Swine, Justus-Liebig-University, Frankfurter Strasse 112, D-35392, Giessen, Germany.

Background: The recently identified swine inflammation and necrosis syndrome (SINS) affects tail, ears, teats, coronary bands, claws and heels of affected individuals. The primarily endogenous syndrome is based on vasculitis, thrombosis, and intimal proliferation, involving defence cells, interleukins, chemokines, and acute phase proteins and accompanied by alterations in clinical chemistry, metabolome, and liver transcriptome. The complexity of metabolic alterations and the influence of the boar led to hypothesize a polygenic architecture of SINS.

View Article and Find Full Text PDF

Identification and Functional Analysis of miRNAs in Extracellular Vesicles of Semen Plasma from High- and Low-Fertility Boars.

Animals (Basel)

December 2024

State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

Artificial insemination (AI), as an efficient assisted reproduction technology, can help the livestock industry to improve livestock and poultry breeds, optimize production performance and improve reproductive efficiency. AI technology has been widely used in pig production in China, but boar fertility affects the effectiveness of AI, and more and more studies have shown that there are significant differences in the fertility of boars with similar semen quality indicators. Therefore, this study aimed to identify biomarker molecules that indicate the level of boar fertility, which is important for improving the efficiency of AI.

View Article and Find Full Text PDF

Semen quality and persistence are critical for evaluating the usability of individual boars in AI, a standard practice in pig breeding. We conducted GWASs on various semen traits of Duroc boars, including MOT, DEN, ABN, MMP, AIR, and ROS levels. These traits were assessed using FCM and CASA.

View Article and Find Full Text PDF

The Wannan black pig is a superior local breed in Anhui province, renowned for its exceptional meat quality and remarkable adaptability to various environmental conditions. Semen, being a crucial indicator of male sexual maturity and fertility, significantly influences the performance of breeding boars. The molecular basis for comprehending the fecundity of boars in practical production lies in understanding the disparities in sperm proteins among boars of varying ages.

View Article and Find Full Text PDF

Background: Seminal plasma is an important component of semen and has a significant effect on sperm function. However, the relationship between seminal plasma and sperm freezing capacity has not been fully studied.

Purpose: Exploring metabolites and proteins related to the boar sperm freezing capacity in seminal plasma, by metabolomic and proteomic approaches, and directly verifying the protective effect of seminal plasma on the cryopreservation of boar sperm using high and low freezability seminal plasma as base freezing extender.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!