The molecular basis of phenotypic evolution: beyond the usual suspects.

Trends Genet

Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA. Electronic address:

Published: August 2024

It has been well documented that mutations in coding DNA or cis-regulatory elements underlie natural phenotypic variation in many organisms. However, the development of sophisticated functional tools in recent years in a wide range of traditionally non-model systems have revealed many 'unusual suspects' in the molecular bases of phenotypic evolution, including upstream open reading frames (uORFs), cryptic splice sites, and small RNAs. Furthermore, large-scale genome sequencing, especially long-read sequencing, has identified a cornucopia of structural variation underlying phenotypic divergence and elucidated the composition of supergenes that control complex multi-trait polymorphisms. In this review article we highlight recent studies that demonstrate this great diversity of molecular mechanisms producing adaptive genetic variation and the panoply of evolutionary paths leading to the 'grandeur of life'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303103PMC
http://dx.doi.org/10.1016/j.tig.2024.04.010DOI Listing

Publication Analysis

Top Keywords

phenotypic evolution
8
molecular basis
4
phenotypic
4
basis phenotypic
4
evolution usual
4
usual suspects
4
suspects well
4
well documented
4
documented mutations
4
mutations coding
4

Similar Publications

Orchids constitute one of the most diverse families of angiosperms, yet their genome evolution and diversity remain unclear. Here we construct and analyse chromosome-scale de novo assembled genomes of 17 representative accessions spanning 12 sections in Dendrobium, one of the largest orchid genera. These accessions represent a broad spectrum of phenotypes, lineages and geographical distributions.

View Article and Find Full Text PDF

The ectoparasitic mite Varroa destructor remains a great threat for the beekeeping industry, for example contributing to excessive winter colony loss in Canada. For decades, beekeepers have sequentially used the registered synthetic varroacides tau-fluvalinate, coumaphos, amitraz, and flumethrin, leading to the risk of resistance evolution in the mites. In addition to the widespread resistance to coumaphos and pyrethroids, a decline in amitraz efficacy has recently been reported in numerous beekeeping regions in Canada.

View Article and Find Full Text PDF

Emergence of multiple foraging strategies under competition.

Math Biosci

January 2025

Department of Mathematics, University of Houston, Houston, TX, 77204, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.

Foraging strategies are shaped by interactions with the environment, and evolve under metabolic constraints. Optimal strategies for isolated and competing organisms have been studied extensively in the absence of evolution. Much less is understood about how metabolic constraints shape the evolution of an organism's ability to detect and reach food.

View Article and Find Full Text PDF

Pollinators are thought to play a key role in driving incipient speciation within the angiosperms. However, the mechanisms underlying floral divergence in plants with generalist pollination systems, remains understudied. Brunsvigia gregaria displays significant geographical variation in floral traits and are visited by diverse pollinator communities.

View Article and Find Full Text PDF

In many multicellular organisms, sexual development is not determined by XX/XY or ZW/ZZ systems but by U/V sex chromosomes. In U/V systems, sex determination occurs in the haploid phase, with U chromosomes in females and V chromosomes in males. Here, we explore several male, female, and partially sex-reversed male lines of giant kelp to decipher how U/V sex chromosomes and autosomes initiate male versus female development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!