The presence of arsenic in groundwater, and through this in drinking water, has been shown to present a serious risk to public health in many regions of the world. In this study, two iron-rich carbonous adsorbents were compared for the removal of arsenate (As(V)) from groundwater. Biochars (FeO-biochar and FeO-pyrochar) derived from biomass waste were functionalised in two different ways with iron chloride for comparation. Batch and dynamic parameters were optimised to achieve >99% As(V) removal efficiency. Experimental data were best described by the pseudo-second order kinetic model, while multi-stage diffusion appeared to limit mass transfer of As(V). Among the isotherm models evaluated, the Freundlich model best described the experimental results with high correlation coefficients (R ≥ 0.94) for both adsorbents. Monolayer adsorption capacities were found to be 4.34 mg/g and 8.66 mg/g for FeO-biochar and FeO-pyrochar, respectively. Batch studies followed by instrumental characterisation of the materials indicated the removal mechanisms involved to be electrostatic interactions (outer-sphere), OH ligand exchange (inner-sphere complexation) and hydrogen bonding with functional groups. Higher pH (9.1), S (167.2 m/g), and iron/elemental content for the FeO-pyrochar (compared with the FeO-biochar) suggested that both surface chemistry and porosity/surface area were important in adsorption. Dynamic studies showed FeO-pyrochar can be used to remove As(V) from groundwater even at low 'environmental' concentrations relevant to legislative limits (<10 μg/L), whereby 7 g of FeO-pyrochar was able to treat 5.4 L groundwater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142205 | DOI Listing |
Toxics
November 2024
Guangzhou Vocational College of Technology & Business, Guangzhou 511442, China.
Geogenic arsenic (As) contamination in groundwater poses a significant public health risk in many regions worldwide. Previous studies have reported hydrogen peroxide (HO) concentrations ranging from 5.8 to 96 μmol L in rainwater, which may contribute to the oxidation and removal of As.
View Article and Find Full Text PDFWater Res
December 2024
Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, Brazil. Electronic address:
Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption.
View Article and Find Full Text PDFEnviron Pollut
December 2024
State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
The sulfate-reducing bacteria (SRB)-induced ferrihydrite transformation is an important cause for arsenic (As) contamination in the aquifer near mining area. Calcium carbonate (CaCO) is widespread and has the potential of regulating As fate directly or indirectly. However, the influence of CaCO on ferrihydrite transformation and the associated As mobilization/redistribution in SRB-containing environments remains unclear.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Research Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8567, Japan.
Extremophiles
November 2024
Department of Biology, University of Pisa, Via A. Volta 4, 56126, Pisa, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!