Chinese wild rice (CWR) is a nutritious and healthy whole grain, worth developing. To develop and use its value, a new type of huangjiu was brewed with CWR, and the flavour characteristics, sensory quality, functional and bioactive components were evaluated. CWR (67 flavour substances) and glutinous rice (GR)-CWR huangjiu (62 flavour substances) had a better flavour than GR huangjiu (54 flavour substances), and the overall style of GR-CWR huangjiu was more skewed towards GR. The fruity, honey, caramel-like, herb and smoky aroma attributes of CWR huangjiu were higher than those of GR huangjiu (P < 0.05), while only the alcoholic was weaker (P < 0.05) due to the lower alcohol content. The huangjiu brewed using CWR had a better taste than that brewed using only GR. Furthermore, CWR huangjiu had the highest content of total dietary fiber (732.0 ± 15.2 mg/100 g), followed by GR-CWR (307.0 ± 8.5 mg/100 g), and GR (127.0 ± 2.3 mg/100 g). CWR huangjiu also had the highest total phenolic compounds (3.32 ± 0.05 mg/100 g/%vol) and total saponins (2.46 ± 0.03 mg/100 g/%vol) contents, followed by GR-CWR and GR. This study provides guidance for exploring further possibilities for CWR in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.139524DOI Listing

Publication Analysis

Top Keywords

flavour substances
12
bioactive components
8
type huangjiu
8
chinese wild
8
wild rice
8
cwr flavour
8
gr-cwr huangjiu
8
huangjiu flavour
8
huangjiu
7
flavour
5

Similar Publications

Synergistic transformation of Cr(VI) in lubricant degradation by bacterial consortium.

World J Microbiol Biotechnol

January 2025

Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry Education, Chongqing Technology and Business University, Chongqing, 400067, China.

In recent years, it has become widely acknowledged that heavy metals are often present in oil-contaminated sites. This study utilized three specific types of microorganisms with different functions to construct a composite bacterial consortium for treating lubricant-Cr(VI) composite pollutants. The selected strains were Lysinbacillus fusiformis and Bacillus tropicus.

View Article and Find Full Text PDF

Polyphenols as reactive carbonyl substances regulators: A comprehensive review of thermal processing hazards mitigation.

Food Res Int

January 2025

College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China. Electronic address:

Reactive carbonyl species (RCS) are a class of compounds with one or more C = O structures with highly reactive electrophilic properties. This comprehensive review delves into the multifaceted role of RCS in thermally processed foods, where they serve as both crucial intermediates in the development of food color and flavor, as well as precursors of potentially harmful compounds. By exploring the carbonyl pool concept, the impact of RCS equilibrium on the formation and reduction of hazardous substances such as acrylamide, hydroxymethylfurfural, advanced glycation end-products, and heterocyclic amines was elucidated.

View Article and Find Full Text PDF

The aim of this study was to investigate the differences of quality indexes, bacterial community and volatile organic compounds (VOCs) of industrial-scale tiger skin chicken feet (TSCF) under air packaging (AP) and vacuum packaging (VP). The results showed that the pH, total volatile basic nitrogen, total number of bacterial colony, and sensory scores in VP group changed less than those in AP group during the storage period. Different packaging conditions also had significant effects on bacterial community at the genus levels.

View Article and Find Full Text PDF

Relationship between physicochemical properties, non-volatile substances, and microbial diversity during the processing of dry-cured Spanish mackerel.

Food Res Int

January 2025

Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China. Electronic address:

To meet the demand of consumers for high-quality dry-cured fish. This study investigates the relationship between microbial diversity and the changes in physicochemical properties and non-volatile flavor compounds of dry-cured Spanish mackerel (DCSM) throughout the curing process. Our findings demonstrate that moisture content significantly decreased during curing, while NaCl generally increased.

View Article and Find Full Text PDF

Exploring the synergistic effect of Lactiplantibacillus plantarum 1-24-LJ and lipase on improving Quality, Flavor, and safety of Suanzharou.

Food Res Int

January 2025

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China. Electronic address:

The aim of this study was to investigate the effects of the addition of Lactiplantibacillus plantarum 1-24-LJ and lipase on physicochemical indexes, nutrition, and flavour substances during Suanzharou's fermentation. Individually, the lipase supplementation expedited the synthesis of organic acids and free fatty acids, thus rapidly acidifying the fermentation environment. Compared to C (8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!