The microbial reduction of selenite to elemental selenium nanoparticles (SeNPs) is thought to be an effective detoxification process of selenite for many bacteria. In this study, Metasolibacillus sp. ES129 and Oceanobacillus sp. ES111 with high selenite reduction efficiency or tolerance were selected for systematic and comparative studies on their performance in selenite removal and valuable SeNPs recovery. The kinetic monitoring of selenite reduction showed that the highest transformation efficiency of selenite to SeNPs was achieved at a concentration of 4.24 mM for ES129 and 4.88 mM for ES111. Ultramicroscopic analysis suggested that the SeNPs produced by ES111 and ES129 had been formed in cytoplasm and subsequently released to extracellular space through cell lysis process. Furthermore, the transcriptome analysis indicated that the expression of genes involved in bacillithiol biosynthesis, selenocompound metabolism and proline metabolism were significantly up-regulated during selenite reduction, suggesting that the transformation of selenite to Se may involve multiple pathways. Besides, the up-regulation of genes associated with nucleotide excision repair and antioxidation-related enzymes may enhance the tolerance of bacteria to selenite. Generally, the exploration of selenite reduction and tolerance mechanisms of the highly selenite-tolerant bacteria is of great significance for the effective utilization of microorganisms for environmental remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.134491 | DOI Listing |
Metallomics
January 2025
Department of Nutritional Sciences, University of Wisconsin, Madison, WI 53706, USA.
We previously used high pressure liquid chromatography (HPLC) coupled with Se-specific inductively coupled plasma mass spectrometry (ICP-MS) and molecule specific (ESI Orbitrap MS/MS) detection to study the increase in liver Se in turkeys and rats supplemented as selenite in high-Se (5 µg Se/g diet) and adequate-Se diets. We found that far more Se is present as selenosugar (seleno-N-acetyl galactosamine) than is present as selenocysteine (Sec) in true selenoproteins. In high-Se liver, the increase in liver Se was due to low molecular weight (LMW) selenometabolites as glutathione-, cysteine- and methyl-conjugates of the selenosugar, but also as high molecular weight (HMW) species as selenosugars decorating general proteins via mixed-disulfide bonds.
View Article and Find Full Text PDFAnal Chem
January 2025
The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China.
An online reactive internal extraction electrospray ionization (iEESI) method was developed for the rapid determination of organic and inorganic speciation information for selenium in poultry tissue samples without complex sample pretreatment. The addition of citric acid as a reducing agent to the internal extraction solvent of methanol/acetic acid (99:1, V/V) for iEESI resulted in the reduction of selenate in the sample to selenite, accompanied by the production of malic acid as an oxidation product. The quantitative analysis of selenate was conducted by using malic acid.
View Article and Find Full Text PDFMicroorganisms
November 2024
Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China.
Soil microbial communities are particularly sensitive to selenium contamination, which has seriously affected the stability of soil ecological environment and function. In this study, we applied high-throughput 16S rRNA gene sequencing to examine the effects of low and high doses of sodium selenite and the selenite-degrading bacterium, PM1, on soil bacterial community composition, diversity, and assembly processes under controlled laboratory conditions. Our results indicated that sodium selenite and strain PM1 were key predictors of bacterial community structure in selenium-contaminated soils.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
Background: Antibiotic resistance in various microorganisms has become one of the most serious health problems worldwide. The use of nanoparticles in combination with conventional antibiotics is one of the recent efforts to overcome these challenges. This study aims to synthesize and evaluate the possibility of using amikacin-loaded selenium nanoparticles as antibacterial agent against multidrug-resistant , that causes bovine mastitis.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland.
The effects of 5.8-GHz microwave (MW) irradiation on the synthesis of mesoporous selenium nanoparticles (mSeNPs) in aqueous medium by reduction of selenite ions with ascorbic acid, using zinc nanoparticles as a hard template and cetyltrimethylammonium bromide (CTAB) as a micellar template, are examined for the first time with a particular emphasis on MW-particle interactions and the NPs morphology. This MW-assisted synthesis is compared to 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!