Interfacial challenges in unconventional oil extraction include heavy oil-water-solid multiphase separation and corrosion inhibition. Herein, a novel strategy based on interfacial hydrogen bonding reconstruction is proposed for constructing multifunctional interfacially active materials (MIAMs) to address multi-interfacial separation needs. A simple one-pot method is applied to successfully synthesize four different MIAM varieties, integrating site groups (-NH, OSO, -COOH, and Si-O-Si) with multiple hydrogen bonds (HBs) into allyl polyether chains. The results indicate that all synthesized MIAMs excel in demulsification, detergency, and corrosion inhibition simultaneously, even at 25 °C. Their dehydration efficiency for different water-in-oil emulsions (even heavy oil emulsion) surpasses 99.9 % even at 16 °C, showing their excellent energy-saving potential for field applications. Furthermore, they demonstrate effective, nondestructive static cleaning (up to 86 %) of adhered oil from solid surfaces at 25 °C and provide corrosion inhibition effects (up to 92.09 %) on mild steel immersed in saturated brine. Mechanistic tests reveal that incorporating multiple HB sites in MIAMs dramatically enhances their effectiveness in interfacial separations. Based on these findings, an HB-dominated noncovalent interaction reconstruction strategy is tentatively proposed to develop advanced materials for low-carbon, efficient interfacial separations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.134477 | DOI Listing |
Langmuir
January 2025
Department of Chemistry, Yuvaraja's College, University of Mysore, Manasagangotri, 570006 Mysuru, India.
Al-air batteries are distinguished by their high theoretical energy density, yet their broader application is hindered by hydrogen evolution corrosion. This research focuses Beta (+) d-glucose (S1) and Adonite (S2) as potential corrosion inhibitors for the Al-5052 alloy within a 4 M NaOH solution. Utilizing electrochemical techniques, hydrogen evolution assessments, and surface analyses, our findings indicate enhancements in anode utilization by 21.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Georgia Southern Univ, Dept Chem & Biochem, POB 8064, Statesboro, GA 30460, USA.
Great attentions have been paid to anticorrosion coatings with self-healing performances to enhance its reliability and protection period, but massive challenges still remain for developing a coating with selectively triggered and accurately controllable self-healing behaviors. Herein, by integrating lamellar graphene oxide (GO) into a polycaprolactone (PCL) nanofiber loaded with 8-hydroxyquinoline (8HQ) corrosion inhibitors, a composite coating with precisely controllable self-healing capabilities is developed. The coating defects can be remotely and accurately repaired under near-infrared (NIR) light irradiation within a very short time.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Inorganic Chemistry, Universidade Federal do Rio de Janeiro UFRJ, Avenida Athos da Silveira Ramos, 149, Cidade Universitária, 21941-909 Rio de Janeiro, Brazil.
This work reports the obtention of Si,N,S-CQDs from sugar cane bagasse and their inhibitory action on the mild steel corrosion in 1 mol L HCl solution. The CQDs were successfully obtained and characterized by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, Dynamic light scattering, Raman, and UV-vis techniques, also showing endogenous self-doping. The anti-corrosive activity of CQDs was investigated by gravimetric tests, potentiodynamic polarization curves, electrochemical impedance measurements, atomic force microscopy, and scanning electron microscopy.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
The practical applications of aqueous Zn metal batteries are promising, yet still impeded by the corrosion reactions and dendrite growth on the Zn metal anode. Here, a self-adsorbed monolayer (SAM) is designed to stabilize the Zn metal anode. Theory and experiment results show that the interfacial confinement effect of the SAM, for one thing, greatly suppresses the corrosion reactions through the HO-poor inner Helmholtz plane because of the steric-hindrance effect, and for another, alleviates the Zn concentration gradient on the anode surface through the Zn enrichment behavior and eventually inhibits the dendrite growth.
View Article and Find Full Text PDFSci Rep
December 2024
Corrosion and Surface Engineering CSIR, National Metallurgical Laboratory, Jamshedpur, India.
Chloride-induced corrosion of steel rebars embedded in mortar was effectively controlled by blending of gallic acid in wet mixture. Mixing of optimized concentration of gallic acid (GA) inhibitor (0.125%) in mortars considerably increased the charge transfer resistance of embedded rebars (80.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!