A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

RTSeg-net: A lightweight network for real-time segmentation of fetal head and pubic symphysis from intrapartum ultrasound images. | LitMetric

The segmentation of the fetal head (FH) and pubic symphysis (PS) from intrapartum ultrasound images plays a pivotal role in monitoring labor progression and informing crucial clinical decisions. Achieving real-time segmentation with high accuracy on systems with limited hardware capabilities presents significant challenges. To address these challenges, we propose the real-time segmentation network (RTSeg-Net), a groundbreaking lightweight deep learning model that incorporates innovative distribution shifting convolutional blocks, tokenized multilayer perceptron blocks, and efficient feature fusion blocks. Designed for optimal computational efficiency, RTSeg-Net minimizes resource demand while significantly enhancing segmentation performance. Our comprehensive evaluation on two distinct intrapartum ultrasound image datasets reveals that RTSeg-Net achieves segmentation accuracy on par with more complex state-of-the-art networks, utilizing merely 1.86 M parameters-just 6 % of their hyperparameters-and operating seven times faster, achieving a remarkable rate of 31.13 frames per second on a Jetson Nano, a device known for its limited computing capacity. These achievements underscore RTSeg-Net's potential to provide accurate, real-time segmentation on low-power devices, broadening the scope for its application across various stages of labor. By facilitating real-time, accurate ultrasound image analysis on portable, low-cost devices, RTSeg-Net promises to revolutionize intrapartum monitoring, making sophisticated diagnostic tools accessible to a wider range of healthcare settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108501DOI Listing

Publication Analysis

Top Keywords

real-time segmentation
16
intrapartum ultrasound
12
segmentation fetal
8
fetal head
8
head pubic
8
pubic symphysis
8
symphysis intrapartum
8
ultrasound images
8
ultrasound image
8
segmentation
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!