Liver fibrosis is characterized by excessive deposition of extracellular matrix (ECM) as a wound healing process. Activated hepatic stellate cells (HpSCs) are the major producer of the ECM and play a central role in liver fibrogenesis. It has been widely accepted that elimination of activated HpSCs or reversion to a quiescent state can be a feasible strategy for resolving the disease, further highlighting the urgent need for novel therapeutic targets. Calreticulin (CRT) is a molecular chaperone that normally resides in the endoplasmic reticulum (ER), important in protein folding and trafficking through the secretory pathway. CRT also plays a critical role in calcium (Ca) homeostasis, with its Ca storage capacity. In the current study, we aimed to demonstrate its function in directing HpSC activation. In a mouse liver injury model, CRT was up-regulated in HpSCs. In cellular experiments, we further showed that this activation was through modulating the canonical TGF-β signaling. As down-regulation of CRT in HpSCs elevated intracellular Ca levels through a form of Ca influx, named store-operated Ca entry (SOCE), we examined whether moderating SOCE affected TGF-β signaling. Interestingly, blocking SOCE had little effect on TGF-β-induced gene expression. In contrast, inhibition of ER Ca release using the inositol trisphosphate receptor inhibitor 2-APB increased TGF-β signaling. Treatment with 2-APB did not alter SOCE but decreased intracellular Ca at the basal level. Indeed, adjusting Ca concentrations by EGTA or BAPTA-AM chelation further enhanced TGF-β-induced signaling. Our results suggest a crucial role of CRT in the liver fibrogenic process through modulating Ca concentrations and TGF-β signaling in HpSCs, which may provide new information and help advance the current discoveries for liver fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ceca.2024.102895 | DOI Listing |
Elife
January 2025
School of Psychology, Korea University, Seoul, Republic of Korea.
Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors.
View Article and Find Full Text PDFPurpose: With the widespread introduction of dual energy computed tomography (DECT), applications utilizing the spectral information to perform material decomposition became available. Among these, a popular application is to decompose contrast-enhanced CT images into virtual non-contrast (VNC) or virtual non-iodine images and into iodine maps. In 2021, photon-counting CT (PCCT) was introduced, which is another spectral CT modality.
View Article and Find Full Text PDFElife
January 2025
Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel.
Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals.
View Article and Find Full Text PDFInt J Biol Markers
January 2025
Department of Respiratory and Critical Care Medicine, Anyue County People's Hospital, Anyue, China.
Purpose: To detect the prognostic importance of liquid-liquid phase separation (LLPS) in lung adenocarcinoma.
Methods: The gene expression files, copy number variation data, and clinical data were downloaded from The Cancer Genome Atlas cohort. LLPS-related genes were acquired from the DrLLPS website.
JMIR Serious Games
January 2025
Department of Interaction Design, National Taipei University of Technology, Rm.701-4, Design Building, No.1, Sec.3, Chung-hsiao E. Rd, Taipei, 10608, Taiwan, 886 912-595408, 886 2-87732913.
Background: Complications due to dysphagia are increasingly prevalent among older adults; however, the tediousness and complexity of conventional tongue rehabilitation treatments affect their willingness to rehabilitate. It is unclear whether integrating gameplay into a tongue training app is a feasible approach to rehabilitation.
Objective: Tongue training has been proven helpful for dysphagia treatment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!