Background: Radiation nanomedicines are nanoparticles labeled with radionuclides that emit α- or β-particles or Auger electrons for cancer treatment. We describe here our 15 years scientific journey studying locally-administered radiation nanomedicines for cancer treatment. We further present a view of the radiation nanomedicine landscape by reviewing research reported by other groups.
Main Body: Gold nanoparticles were studied initially for radiosensitization of breast cancer to X-radiation therapy. These nanoparticles were labeled with In to assess their biodistribution after intratumoural vs. intravenous injection. Intravenous injection was limited by high liver and spleen uptake and low tumour uptake, while intratumoural injection provided high tumour uptake but low normal tissue uptake. Further, [In]In-labeled gold nanoparticles modified with trastuzumab and injected iintratumourally exhibited strong tumour growth inhibition in mice with subcutaneous HER2-positive human breast cancer xenografts. In subsequent studies, strong tumour growth inhibition in mice was achieved without normal tissue toxicity in mice with human breast cancer xenografts injected intratumourally with gold nanoparticles labeled with β-particle emitting Lu and modified with panitumumab or trastuzumab to specifically bind EGFR or HER2, respectively. A nanoparticle depot (nanodepot) was designed to incorporate and deliver radiolabeled gold nanoparticles to tumours using brachytherapy needle insertion techniques. Treatment of mice with s.c. 4T1 murine mammary carcinoma tumours with a nanodepot incorporating [Y]Y-labeled gold nanoparticles inserted into one tumour arrested tumour growth and caused an abscopal growth-inhibitory effect on a distant second tumour. Convection-enhanced delivery of [Lu]Lu-AuNPs to orthotopic human glioblastoma multiforme (GBM) tumours in mice arrested tumour growth without normal tissue toxicity. Other groups have explored radiation nanomedicines for cancer treatment in preclinical animal tumour xenograft models using gold nanoparticles, liposomes, block copolymer micelles, dendrimers, carbon nanotubes, cellulose nanocrystals or iron oxide nanoparticles. These nanoparticles were labeled with radionuclides emitting Auger electrons (In, Tc, I, Pd, Pt, Pt), β-particles (Lu, Re, Re, Y, Au, I) or α-particles (Ac, Bi, Pb, At, Ra). These studies employed intravenous or intratumoural injection or convection enhanced delivery. Local administration of these radiation nanomedicines was most effective and minimized normal tissue toxicity.
Conclusions: Radiation nanomedicines have shown great promise for treating cancer in preclinical studies. Local intratumoural administration avoids sequestration by the liver and spleen and is most effective for treating tumours, while minimizing normal tissue toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11069497 | PMC |
http://dx.doi.org/10.1186/s41181-024-00266-y | DOI Listing |
J Pharm Anal
December 2024
Department of Radiation Oncology, Anhui No. 2 Provincial People's Hospital, Hefei, 230031, China.
Radiotherapy (RT) is one of the most common treatments for cancer. However, intracellular glutathione (GSH) plays a key role in protecting cancer from radiation damage. Herein, we have developed a platelet membrane biomimetic nanomedicine (PMD) that induces double GSH consumption to enhance tumor radioimmunotherapy.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.
Purpose: None of the antibody-drug conjugates (ADCs) targeting Claudin 18.2 (CLDN18.2) have received approval from regulatory authorities due to their limited clinical benefits.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
Background: Antibiotic resistance of many bacteria, including Methicillin-resistant (MRSA), has become a major threat to global health. Zinc Oxide Quantum dots (ZnO-QDs) show good antibacterial activity, but most of them are insoluble in water, limiting their application range, and there is a lack of research on drug resistance inducement.
Methods: The water-soluble zinc oxide quantum dots modified by APTES (ZnO@APTES QDs) were prepared by a microwave assisted synthesis.
Med Gas Res
June 2025
Research Department, Plovdiv Medical University, Plovdiv, Bulgaria.
Medical gases were primarily used for respiratory therapy and anesthesia, which showed promising potential in the cancer therapy. Several physiological and pathological processes were affected by the key gases, such as oxygen, carbon dioxide, nitric oxide, hydrogen sulfide, and carbon monoxide. Oxygen targets shrinking the tumor via hyperbaric oxygen therapy, and once combined with radiation therapy it enhances its effect.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Behbahan Faculty of Medical Sciences, Behbahan, Iran. Electronic address:
For men with localized prostate cancer, radiotherapy (RT) remains a common therapeutic option. Although radiotherapy has had significant success, it remains an intractable issue in promoting radiation damage to tumor tissue while reducing adverse effects on healthy tissue. Chemicals or pharmacological substances known as radiosensitizers can increase the killing effect on tumor cells by accelerating DNA damage and indirectly producing free radicals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!