In symmetry-adapted perturbation theory (SAPT), accurate calculations on non-covalent interaction (NCI) for large complexes with more than 50 atoms are time-consuming using large basis sets. More efficient ones with smaller basis sets usually result in poor prediction in terms of dispersion and overall energies. In this study, we propose two composite methods with baseline calculated at SAPT2/aug-cc-pVDZ and SAPT2/aug-cc-pVTZ with dispersion term corrected at SAPT2+ level using bond functions and smaller basis set with MP2 corrections respectively. Benchmark results on representative NCI data sets, such as S22, S66, and so forth, show significant improvements on the accuracy compared to the original SAPT Silver standard and comparable to SAPT Gold standard in some cases with much less computational cost.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.27386 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!