Evaluation of various membranes at different fluxes to enable large-volume single-use perfusion bioreactors.

Biotechnol Bioeng

Biologics Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA.

Published: September 2024

The growing demand for biological therapeutics has increased interest in large-volume perfusion bioreactors, but the operation and scalability of perfusion membranes remain a challenge. This study evaluates perfusion cell culture performance and monoclonal antibody (mAb) productivity at various membrane fluxes (1.5-5 LMH), utilizing polyvinylidene difluoride (PVDF), polyethersulfone (PES), or polysulfone (PS) membranes in tangential flow filtration mode. At low flux, culture with PVDF membrane maintained higher cell culture growth, permeate titer (1.06-1.34 g/L) and sieving coefficients (≥83%) but showed lower permeate volumetric throughput and higher transmembrane pressure (TMP) (>1.50 psi) in the later part of the run compared to cultures with PES and PS membrane. However, as permeate flux increased, the total mass of product decreased by around 30% for cultures with PVDF membrane, while it remained consistent with PES and PS membrane, and at the highest flux studied, PES membrane generated 12% more product than PVDF membrane. This highlights that membrane selection for large-volume perfusion bioreactors depends on the productivity and permeate flux required. Since operating large-volume perfusion bioreactors at low flux would require several cell retention devices and a complex setup, PVDF membranes are suitable for low-volume operations at low fluxes whereas PES membranes can be a desirable alternative for large-volume higher demand products at higher fluxes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.28722DOI Listing

Publication Analysis

Top Keywords

perfusion bioreactors
16
large-volume perfusion
12
pvdf membrane
12
pes membrane
12
cell culture
8
membrane
8
low flux
8
permeate flux
8
perfusion
6
large-volume
5

Similar Publications

Islet transplantation and more recently stem cell-derived islets were shown to successfully re-establish glycemic control in people with type 1 diabetes under immunosuppression. These results were achieved through intraportal infusion which leads to early graft losses and limits the capacity to contain and retrieve implanted cells in case of adverse events. Extra-hepatic sites and encapsulation devices have been developed to address these challenges and potentially create an immunoprotective or immune-privileged environment.

View Article and Find Full Text PDF

Harnessing cell aggregates for enhanced adeno-associated virus manufacturing: Cultivation strategies and scale-up considerations.

Biotechnol Prog

January 2025

AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Royal Institute of Technology (KTH), Stockholm, Sweden.

The possibility to produce recombinant adeno-associated virus (rAAV) by adherent HEK293T cells was studied in a stirred tank bioreactor (STR) culture of cell aggregates. A proof-of-concept of rAAV production was successfully demonstrated in a process where single cells were first expanded, then cell aggregates were formed by dilution into a different medium 1 day before triple plasmid transfection was conducted. An alternative approach for the STR inoculation using a seed taken from a high cell density perfusion (HCDP) culture was also investigated.

View Article and Find Full Text PDF

Generation of upscaled quantities of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), for therapeutic or testing applications, is both expensive and time-consuming. Herein, a scalable bioprocess for hiPSC-CM expansion in stirred-tank bioreactors (STB) is developed. By combining the continuous activation of the Wnt pathway, through perfusion of CHIR99021, within a mild hypoxia environment, the expansion of hiPSC-CM as aggregates is maximized, reaching 4 billion of pure hiPSC-CM in 2L STB.

View Article and Find Full Text PDF

Recent years, intensified fed-batch culture with ultra-high seeding density (uHSD-IFB) is coming to the forefront of manufacturers' choice for its enhanced productivity. However, the effects of seed cell physiological state and aeration strategies on these processes remain underexplored due to the ultra-high seeding density. Currently, the pre-production seeding inoculum (N-1) crucial for the uHSD-IFB cultures relies heavily upon case-by-case empirical experiences.

View Article and Find Full Text PDF

Chinese hamster ovary (CHO) cells are widely used to produce recombinant proteins, including monoclonal antibodies (mAbs), through various process modes. While fed-batch (FB) processes have been the standard, a shift toward high-density perfusion processes is being driven by increased productivity, flexible facility footprints, and lower costs. Ensuring the clearance of process-related impurities, such as host cell proteins (HCPs), is crucial in biologics manufacturing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!