A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The origin of betaine in mouse oocytes and preimplantation embryos†. | LitMetric

Betaine has important roles in preimplantation mouse embryos, including as an organic osmolyte that functions in cell volume regulation in the early preimplantation stages and as a donor to the methyl pool in blastocysts. The origin of betaine in oocytes and embryos was largely unknown. Here, we found that betaine was present from the earliest stage of growing oocytes. Neither growing oocytes nor early preantral follicles could take up betaine, but antral follicles were able to transport betaine and supply the enclosed oocyte. Betaine is synthesized by choline dehydrogenase, and female mice lacking Chdh did not have detectable betaine in their oocytes or early embryos. Supplementing betaine in their drinking water restored betaine in the oocyte only when supplied during the final stages of antral follicle development but not earlier in folliculogenesis. Together with the transport results, this implies that betaine can only be exogenously supplied during the final stages of oocyte growth. Previous work showed that the amount of betaine in the oocyte increases sharply during meiotic maturation due to upregulated activity of choline dehydrogenase within the oocyte. This betaine present in mature eggs was retained after fertilization until the morula stage. There was no apparent role for betaine uptake via the SIT1 (SLC6A20) betaine transporter that is active at the 1- and 2-cell stages. Instead, betaine was apparently retained because its major route of efflux, the volume-sensitive organic osmolyte - anion channel, remained inactive, even though it is expressed and capable of being activated by a cell volume increase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247276PMC
http://dx.doi.org/10.1093/biolre/ioae053DOI Listing

Publication Analysis

Top Keywords

betaine
15
origin betaine
8
organic osmolyte
8
cell volume
8
betaine oocytes
8
growing oocytes
8
oocytes early
8
oocyte betaine
8
choline dehydrogenase
8
betaine oocyte
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!