Background: Inflammation and obesity are the risk factors for hyperlipidaemia. Nonetheless, research regarding the association between dietary live microbes intake and hyperlipidaemia is lacking. Therefore, this study focused on revealing the relationship between them and mediating roles of inflammation and obesity.
Methods: Totally 16,677 subjects were enrolled from the National Health and Nutrition Examination Survey (NHANES) (1999-2010 and 2015-2020). To explore the correlation between live microbes and hyperlipidaemia as well as blood lipid levels, respectively, multiple logistic regression and linear regression were employed. Furthermore, the mediating roles of body mass index (BMI), C-reactive protein (Crp) and their chain effect were explored through mediating analysis.
Results: High dietary live microbes intake was the protective factor for hyperlipidaemia. In addition, high dietary live microbes intake exhibited a positive relationship to the high-density lipoprotein cholesterol (HDL-C) among males (β = 2.52, 95% CI: 1.29, 3.76, P < 0.0001) and females (β = 2.22, 95% CI: 1.05, 3.38, P < 0.001), but exhibited a negative correlation with triglyceride (TG) levels in males (β = -7.37, 95% CI: -13.16, -1.59, P = 0.02) and low-density lipoprotein cholesterol (LDL-C) levels in females (β = -2.75, 95% CI: -5.28, -0.21, P = 0.02). Crp, BMI and their chain effect mediated the relationship between live microbes with HDL-C levels. Moreover, BMI and the chain effect mediated the relationship between live microbes with LDL-C levels.
Conclusion: Dietary live microbes intake is related to a lower hyperlipidaemia risk. Crp, BMI and their chain effect make a mediating impact on the relationship.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11067115 | PMC |
http://dx.doi.org/10.1186/s12944-024-02107-y | DOI Listing |
Lancet Microbe
January 2025
Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital-University Medical Center Utrecht, Utrecht, Netherlands. Electronic address:
Background: Live attenuated influenza vaccines (LAIVs) alter nasopharyngeal microbiota in adults. It is poorly understood why LAIV immunogenicity varies across populations, but it could be linked to the microbiome. We aimed to investigate the interactions between intranasal immunisation with LAIV and nasopharyngeal microbiota composition in children from The Gambia.
View Article and Find Full Text PDFForest Fruits Organic Honey Vinegar (FFOHV) is a spontaneously fermented (yeast) and acetified (Acetic Acid Bacteria-AAB) Miombo Woodland honey vinegar developed in Zambia. Live vinegars containing live microbial cultures are marketed for their probiotic health benefits. The correlation between a well-developed gut microbiome and human health is well studied and fermented products such as live vinegar containing AAB contribute to a healthy gut microbiome.
View Article and Find Full Text PDFSmall
January 2025
Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA.
The chemistry of the extracellular electron transfer (EET) process in microorganisms can be understood by interfacing them with abiotic materials that act as external redox mediators. These mediators capture and transfer extracellular electrons through redox reactions, bridging the microorganism and the electrode surface. Understanding this charge transfer process is essential for designing biocapacitors capable of modulating and storing charge signatures as capacitance at the electrode interface.
View Article and Find Full Text PDFVaccine
January 2025
Department of Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
The development of safe and effective mucosal vaccines are hampered by safety concerns associated with adjuvants or live attenuated microbes. We previously demonstrated that targeting antigens to the human-Fc-gamma-receptor-I (hFcγRI) eliminates the need for adjuvants, thereby mitigating safety concerns associated with the mucosal delivery of adjuvant formulated vaccines. Here we evaluated the role of the route of immunization in the mucosal immunity elicited by the hFcγRI-targeted vaccine approach.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Plant-Fusarium Interactions Research Team, School of BioSciences, University of Melbourne, Parkville, Australia.
Jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) are the three major phytohormones coordinating plant defense responses, and all three are implicated in the defense against the fungal pathogen Fusarium oxysporum. However, their distinct modes of action and possible interactions remain unknown, in part because all spatial information on their activity is lacking. Here, we set out to probe this spatial aspect of plant immunity by using live-microscopy with newly developed fluorescence-based transcriptional reporter lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!