Heparan sulfate proteoglycan 2 (HSPG2) gene encodes the matrix protein Perlecan, and genetic inactivation of this gene creates mice that are embryonic lethal with severe neural tube defects (NTDs). We discovered rare genetic variants of HSPG2 in 10% cases compared to only 4% in controls among a cohort of 369 NTDs. Endorepellin, a peptide cleaved from the domain V of Perlecan, is known to promote angiogenesis and autophagy in endothelial cells. The roles of enderepellin in neurodevelopment remain unclear so far. Our study revealed that endorepellin can migrate to the neuroepithelial cells and then be recognized and bind with the neuroepithelia receptor neurexin in vivo. Through the endocytic pathway, the interaction of endorepellin and neurexin physiologically triggers autophagy and appropriately modulates the differentiation of neural stem cells into neurons as a blocker, which is necessary for normal neural tube closure. We created knock-in (KI) mouse models with human-derived HSPG2 variants, using sperm-like stem cells that had been genetically edited by CRISPR/Cas9. We realized that any HSPG2 variants that affected the function of endorepellin were considered pathogenic causal variants for human NTDs given that the severe NTD phenotypes exhibited by these KI embryos occurred in a significantly higher response frequency compared to wildtype embryos. Our study provides a paradigm for effectively confirming pathogenic mutations in other genetic diseases. Furthermore, we demonstrated that using autophagy inhibitors at a cellular level can repress neuronal differentiation. Therefore, autophagy agonists may prevent NTDs resulting from failed autophagy maintenance and neuronal over-differentiation caused by deleterious endorepellin variants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2024.03.026 | DOI Listing |
Dev Growth Differ
January 2025
Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan.
The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube.
View Article and Find Full Text PDFJ Neurosci
January 2025
Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Genetic information is involved in the gradual emergence of cortical areas since the neural tube begins to form, shaping the heterogeneous functions of neural circuits in the human brain. Informed by invasive tract-tracing measurements, the cortex exhibits marked interareal variation in connectivity profiles, revealing the heterogeneity across cortical areas. However, it remains unclear about the organizing principles possibly shared by genetics and cortical wiring to manifest the spatial heterogeneity across cortex.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Structural Engineering, Faculty of Engineering, Mansoura University, Mansoura, Egypt.
Concrete-filled double-skin steel tubular (CFDST) columns have become widely utilized in building construction and bridges, thanks to their exceptional structural capabilities. Therefore, this study investigates the axial compressive behavior of square CFDST columns. The study aims to explore the influence of external and internal plate shapes (flat or corrugated plates) and different widths of internal steel tubes on the axial compressive behavior.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
The Institute of Life Sciences, Wenzhou University, Wenzhou 325035 China. Electronic address:
Maternal diabetes significantly induces embryonic neural tube defects (NTDs). Thus, it is urgent need to further investigate the regulatory mechanism and therapeutic strategy for maternal diabetes-induced embryonic NTDs. Pyroptosis is a novel mode of programmed cell death.
View Article and Find Full Text PDFSingle-shot 3D optical microscopy that can capture high-resolution information over a large volume has broad applications in biology. Existing 3D imaging methods using point-spread-function (PSF) engineering often have limited depth of field (DOF) or require custom and often complex design of phase masks. We propose a new, to the best of our knowledge, PSF approach that is easy to implement and offers a large DOF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!