Background: In mechanical thrombectomy (MT), extracranial vascular tortuosity is among the main determinants of procedure duration and success. Currently, no rapid and reliable method exists to identify the anatomical features precluding fast and stable access to the cervical vessels.
Methods: A retrospective sample of 513 patients were included in this study. Patients underwent first-line transfemoral MT following anterior circulation large vessel occlusion stroke. Difficult transfemoral access (DTFA) was defined as impossible common carotid catheterization or time from groin puncture to first carotid angiogram >30 min. A machine learning model based on 29 anatomical features automatically extracted from head-and-neck computed tomography angiography (CTA) was developed to predict DTFA. Three experienced raters independently assessed the likelihood of DTFA on a reduced cohort of 116 cases using a Likert scale as benchmark for the model, using preprocedural CTA as well as automatic 3D vascular segmentation separately.
Results: Among the study population, 11.5% of procedures (59/513) presented DTFA. Six different features from the aortic, supra-aortic, and cervical regions were included in the model. Cross-validation resulted in an area under the receiver operating characteristic (AUROC) curve of 0.76 (95% CI 0.75 to 0.76) for DTFA prediction, with high sensitivity for impossible access identification (0.90, 95% CI 0.81 to 0.94). The model outperformed human assessment in the reduced cohort [F1-score (95% CI) by experts with CTA: 0.43 (0.37 to 0.50); experts with 3D segmentation: 0.50 (0.46 to 0.54); and model: 0.70 (0.65 to 0.75)].
Conclusions: A fully automatic model for DTFA prediction was developed and validated. The presented method improved expert assessment of difficult access prediction in stroke MT. Derived information could be used to guide decisions regarding arterial access for MT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/jnis-2024-021718 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!