Platinum (Pt) is a Technology Critical Element (TCE) which, since the 1990s, has been mainly used in the industry in catalytic converters for automobile emission control. Previous studies have shown Pt contamination of road-side sediments and surface sediments in urban rivers and lakes but few of them have addressed temporal variations. The present work presents historical Pt concentration trends in Cs-dated sediment cores from floodplains or secondary channels at the outlets of three major French watersheds (Loire, Rhone, and Seine Rivers) covering the past ∼110 years, i.e., from the 1910s to 2021. Platinum baseline levels in the sediment were estimated for the Loire River (0.76 ± 0.22 μg kg for the period ∼1910-∼1955) and the Rhone River (1.64 ± 0.41 μg kg), and historical Pt variations seem to reflect variations in hydrodynamics and grain size composition. Since the early 2000s, Pt concentrations in the Loire and the Rhone River sediments tend to increase (>2.5 μg kg) and were attributed to the use of car catalytic converters, an emerging technology since the 1990s using >50 % of European Pt demand. High and variable historical Pt concentrations (up to 14.6 μg kg) in the Seine River sediments may reflect legacy Pt sources due to former anthropogenic activities in this watershed, such as the use of Pt-based catalysts for petroleum refinery since the end of the 1940s, coal handling and precious metals refining, probably concealing the likely presence of an emerging traffic-related Pt signal. This first comparison of historical Pt concentration trends in sediments from contrasting watersheds allows to distinguish signals originating from different natural and anthropogenic sources (background level, historical sources, road traffic).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.172937 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!