Association of COVID-19 vaccination with risks of hospitalization due to cardiovascular and other diseases: A study using data from the UK Biobank.

Int J Infect Dis

School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and The Chinese University of Hong Kong, Hong Kong, China; CUHK Shenzhen Research Institute, Shenzhen, China; Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong; Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, Hong Kong; Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong; Hong Kong Branch of the Chinese Academy of Sciences Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China. Electronic address:

Published: August 2024

Objectives: To explore whether COVID-19 vaccination protects against hospital admission by preventing infections and severe disease.

Methods: We leveraged the UK Biobank and studied associations of COVID-19 vaccination (BioNTech-BNT162b2 or Oxford-AstraZeneca-ChAdOx1) with hospitalizations from cardiovascular and other selected diseases (N = 393,544; median follow-up = 54 days among vaccinated individuals). Multivariable Cox, Poisson regression, propensity score matching, and inverse probability treatment weighting analyses were performed. We also performed adjustment using prescription-time distribution matching, and prior event rate ratio.

Results: We observed that COVID-19 vaccination (at least one dose), compared with no vaccination, was associated with reduced short-term risks of hospitalizations from stroke (hazard ratio [HR] = 0.178, 95% confidence interval [CI]: 0.127-0.250, P = 1.50e-23), venous thromboembolism (HR = 0.426, CI: 0.270-0.673, P = 2.51e-4), dementia (HR = 0.114, CI: 0.060-0.216; P = 2.24e-11), non-COVID-19 pneumonia (HR = 0.108, CI: 0.080-0.145; P = 2.20e-49), coronary artery disease (HR = 0.563, CI: 0.416-0.762; P = 2.05e-4), chronic obstructive pulmonary disease (HR = 0.212, CI: 0.126-0.357; P = 4.92e-9), type 2 diabetes (HR = 0.216, CI: 0.096-0.486, P = 2.12e-4), heart failure (HR = 0.174, CI: 0.118-0.256, P = 1.34e-18), and renal failure (HR = 0.415, CI: 0.255-0.677, P = 4.19e-4), based on standard Cox regression models. Among the previously mentioned results, reduced hospitalizations for stroke, heart failure, non-COVID-19 pneumonia, and dementia were consistently observed across regression, propensity score matching/inverse probability treatment weighting, prescription-time distribution matching, and prior event rate ratio. The results for two-dose vaccination were similar.

Conclusions: Taken together, this study provides further support to the safety and benefits of COVID-19 vaccination, and such benefits may extend beyond reduction of infection risk or severity per se. However, causal relationship cannot be concluded and further studies are required.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijid.2024.107080DOI Listing

Publication Analysis

Top Keywords

covid-19 vaccination
20
regression propensity
8
propensity score
8
probability treatment
8
treatment weighting
8
prescription-time distribution
8
distribution matching
8
matching prior
8
prior event
8
event rate
8

Similar Publications

Severity and Long-Term Mortality of COVID-19, Influenza, and Respiratory Syncytial Virus.

JAMA Intern Med

January 2025

Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, Washington.

Importance: SARS-CoV-2, influenza, and respiratory syncytial virus (RSV) contribute to many hospitalizations and deaths each year. Understanding relative disease severity can help to inform vaccination guidance.

Objective: To compare disease severity of COVID-19, influenza, and RSV among US veterans.

View Article and Find Full Text PDF

Low Neutralization of SARS-CoV-2 Omicron BA5248, XBB15 and JN1 by Homologous Booster and Breakthrough Infection.

J Med Virol

February 2025

Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, P. R. China.

Immunity against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can be induced through either infection with the virus or vaccination, providing protection against reinfection or reducing the risk of severe clinical outcomes. In this study, we recruited 172 volunteers who received different vaccination regimens, including 124 individuals who had recovered from breakthrough infections caused by the Omicron variant (27 with 2 doses, 49 with 3 doses, and 48 with 4 doses) and 48 healthy donors who did not experience breakthrough infections (all of whom received a fourth dose during the infection wave). We measured neutralizing antibody levels against Omicron BA.

View Article and Find Full Text PDF

Safety and immunogenicity of Ad26.COV2.S in adolescents: Phase 2 randomized clinical trial.

Hum Vaccin Immunother

December 2025

Crucell Integration, Janssen Research and Development, Beerse, Belgium.

We conducted a randomized, Phase 2 trial to assess the safety and humoral immunogenicity of reduced doses/dose volume of the standard dose of Ad26.COV2.S COVID-19 vaccine (5 × 10 viral particles [vp]) in healthy adolescents aged 12-17 years.

View Article and Find Full Text PDF

Objectives: Surveillance of acute respiratory infection (ARI) informs vaccination, preventive, and management decisions. In many countries, immunofluorescence is the cornerstone for ARI surveillance. We aimed to determine the effect of adding multiplex polymerase chain reaction (mPCR) to conventional surveillance in ARI.

View Article and Find Full Text PDF

Aim: This study examined citizens' knowledge and compliance with COVID-19 standard operating procedures (SOPs), vaccine acceptance and hesitancy, and factors that could influence these behaviors.

Methods: The study that utilised the Lot Quality Assurance Sampling (LQAS) approach was conducted in eight districts of Central Uganda; Kiboga, Kyankwanzi, Mubende, Kasanda, Mityana, Luwero, Nakaseke, and Nakasongola districts. Each district was divided into five supervision areas (SAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!