Shaping single crystalline BaTiOnanostructures by focused neon or helium ion milling.

Nanotechnology

Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, D-14109 Berlin, Germany.

Published: May 2024

The realization of perovskite oxide nanostructures with controlled shape and dimensions remains a challenge. Here, we investigate the use of helium and neon focused ion beam (FIB) milling in an ion microscope to fabricate BaTiOnanopillars of sub-500 nm in diameter starting from BaTiO(001) single crystals. Irradiation of BaTiOwith He ions induces the formation of nanobubbles inside the material, eventually leading to surface swelling and blistering. Ne-FIB is shown to be suitable for milling without inducing surface swelling. The resulting structures are defect-free single crystal nanopillars, which are enveloped, on the top and lateral sidewalls, by a point defect-rich crystalline region and an outer Ne-rich amorphous layer. The amorphous layer can be selectively etched by dipping in diluted HF. The geometry and beam-induced damage of the milled nanopillars depend strongly on the patterning parameters and can be well controlled. Ne ion milling is shown to be an effective method to rapidly prototype BaTiOcrystalline nanostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ad4713DOI Listing

Publication Analysis

Top Keywords

ion milling
8
surface swelling
8
amorphous layer
8
shaping single
4
single crystalline
4
crystalline bationanostructures
4
bationanostructures focused
4
focused neon
4
neon helium
4
ion
4

Similar Publications

Compositionally complex doping of spinel oxides toward high-entropy oxides is expected to enhance their electrochemical performance substantially. We successfully prepared high-entropy compounds, the oxide (ZnMgCoCu)FeO (HEOFe), lithiated oxyfluoride Li(ZnMgCoCu)FeOF (LiHEOFeF), and lithiated oxychloride Li(ZnMgCoCu)FeOCl (LiHEOFeCl) with a spinel-based cubic structure by ball milling and subsequent heat treatment. The products exhibit particles with sizes from 50 to 200 nm with a homogeneous atomic distribution.

View Article and Find Full Text PDF

Nucleocapsid assembly drives Ebola viral factory maturation and dispersion.

Cell

December 2024

Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany. Electronic address:

Replication and genome encapsidation of many negative-sense RNA viruses take place in virus-induced membraneless organelles termed viral factories (VFs). Although liquid properties of VFs are believed to control the transition from genome replication to nucleocapsid (NC) assembly, VF maturation and interactions with the cellular environment remain elusive. Here, we apply in situ cryo-correlative light and electron tomography to follow NC assembly and changes in VF morphology and their liquid properties during Ebola virus infection.

View Article and Find Full Text PDF

Brown rot fungi, the major decomposers in the boreal coniferous forests, cause a unique wood decay pattern but many aspects of brown rot decay mechanisms remain unclear. In this study, decayed wood samples were prepared by cultivation of the brown rot fungi Gloeophyllum trabeum and Coniophora puteana on Japanese coniferous wood of Cryptomeria japonica, and the cutting planes were prepared using broad ion beam (BIB) milling, which enables observation of intact wood, in addition to traditional microtome sections. Samples were observed using field-emission SEM revealing that areas inside the end walls of ray parenchyma cells were the first to be degraded.

View Article and Find Full Text PDF

Superior selectivity for efficiently reductive degradation of hydrophobic organic pollutants in strongly competitive systems.

J Hazard Mater

December 2024

Department of Civil, Construction and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.

Highly toxic halo-/nitro-substituted organics, often in low concentrations and with high hydrophobicity, make it difficult to obtain electrons for reduction when strongly electron-competing substances (e.g., O, H/HO, NO) coexist.

View Article and Find Full Text PDF

Rare earth benzene tetraanion-bridged amidinate complexes.

Chem Sci

December 2024

Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China

The benzene tetraanion-bridged rare earth inverse arene amidinate complexes [{Ln(κ:η-Piso)}(μ-η:η-CH)] (2-Ln, Ln = Gd, Tb, Dy, Y; Piso = {(NDipp)C Bu}, Dipp = CH Pr-2,6) were prepared by the reduction of parent Ln(iii) bis-amidinate halide precursors [Ln(Piso)X] (Ln = Tb, Dy; X = Cl, I) or [Ln(Piso)I] (Ln = Gd, Y) with 3 eq. KC in benzene, or by the reaction of the homoleptic Ln(ii) complexes [Ln(Piso)] (Ln = Tb, Dy) with 2 eq. KC in benzene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!